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Abstract

In recent years, there has been a growing interest in the numerical solution of the MHD
system,particularly the idealized system, which is obtained by neglecting dissipative effects. High-
resolution schemes, which were successfully applied to the Euler equations, bave been tried for
the MHD equations. The non-convexity and coincidence of eigenvalues for some cases raises
additional questions regarding the convergence of numerical schemes. In the present paper, the 1st
order upwind, 2nd and 3rd order Essentially Non-Oscillatory and 5th order Weighted Essentially
Non-Oscillatory schemes have been used on the 1D ideal MHD equations. A characteristic-based
is used where the flux vector is resolved along the characteristic directions and reconstructed in
an upwindéd manner. Results are presented for the MHD shock tube and the high Mach number

test cases.
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1’ Introduction

Magnetohydrodynamics is a combination of fluid mechanics and electromagnetics. It describes the
behavior of an electrically conductiong fluid in the presence of electric and magnetic, fields. Its
applications are largely in the areas of astrophysics (flow of interstellar gas masses, interaction of
solar winds with the planetary magnetic field, etc). In recent times, it has become important in the
context of hypersonic vehicles where the temperatures are high enough to ionize the surrounding
gases. Technologies for using the properties of plasma for drag reduction and stealth have been
recently considered. In view of all this, there has been a growing interest in the numerical solution
of the magnetohydrodynamic (MHD) equations.

The idealized MHD cquations are derived from the complete equations by neglecting dissipative
terms like viscosity, heat conduction and electrical resistivity of the gases [1]. The ideal MHD equa-
tions form a non-strictly hyperbolic system where, upto five, out of the seven eigenvalues can coincide.
It has also been shown that these equations are non-convex 2], thus allowing for the formation of
compound waves, e.g, consisting of a rarefaction wave attached to a shock of the same family. These
properties prevent the straightforward application of Godunov-type algorithms developed for the Eu-
ler equations to the MHD system. Many issues, especially the question of shock admissibility, are yet
to be resolved [3].

Following the successful application of high resolution upwind schemes to the Euler equations,
these have also been applied to the MHD system. Brio and Wu [2] introduced an upwind differencing
scheme which was based on a Roe-type approximate Ricmann solver. The drawback of their scheme
was that a Roe averaged Jacobian could not be found cxcept in the case y = 2. Later, Cargo and
Gallice [4] outlined the construction of Roe matrices for the ideal MHD for the general case. Zachary
and Collela [5] have considered a modification of the Engquist - Osher flux while Toth and Odstreil (6]
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have compared some FCT and TVD schemes for the MHD Riemann problem. Khanfir 7] intrq

an extension of the kinetic schemes to the MHD 5¥5tem' : ; duceg
The Essentially Non-Oscillatory (ENO) and Weighted Essentially Non-Oscillatory (WENQ) £

of schemes have been applied to the Euler equations as well as the equations of electromagyy; Amily

excellent results. Previous attempts have been made to apply the ﬁux-d.iﬂ'erencing form of the \mth
schemes to the 1D MHD system [12, 16) and the resu!ts are encouraging. In the present Paper
ENO and WENO schemes have been applied to equations of ideal 1D MHD and the perf 1 the

. orm
these high-resolution schemes are compared for the two coplanar MHD Riemann problemg fol_m&nce of
in [2]. A characterisitic based algorithm has been developed which decomposes the flux v,

ulat
: istic directions. These co ector in:ﬂ
its component along each of the seven charactenstlf: ections mgonents are Teconstry,
using the ENO/WENO schemes and upwinding is done based on the sign of the con'espondined
cigenvalue. This is a straightforward application of the approach used for the Euler equation ¢
MHD system and thus suffers from the drawback of non-unique structure of intermediate shtn:kh;e
It may be possible to solve this problem by using dissipative terms modeling the actua) Physica]
dissipation while capturing intermediate shocks. However, these prgblems are not faced in the pmml
study since both the test cases are coplanar problems with a unique intermediate shock structure Te:t
first test case is an extension of Sod's shock tube test for the Euler equations and the solution COx;t o
a compound wave consisting of an intermediate shock attached to a slow rarefaction wave, apart f::u
a regular slow shock, fast rarefaction waves and a contact discontinuity. The second test cage s M m
Mach number problem, where Mach numbers go upto 15.5 and tests the robustness of the schemeg
It can be formulated as a standard hydrodynamical problem with full pressure being equivalent t(; N
the gas pressure, and thus the analytical result can be found. It should also be mentioned that in the X
absence of magnetic field, the MHD equations reduce to the Euler equations and thus the standarq ¢
hydrodynamical problems used to validate Euler solvers (like Sod’s test) can be used here as wel,
The results computed by the higher order non-oscillatory schemes are compared with the first order
upwind scheme and with results presented in [2, 5, 4, 6, 12]. .
The layout of the paper is as follows. In section 2, the MHD equations and their 1D form
are defined. A brief description of the MHD eigenstructure for the 1D case is also given. The
eigenvalues and a complete set of well-defined eigenvectors, which are essential to our characteristic-
based algorithm, have been presented. Section 3 gives an outline of our numerical treatment of the - =%
equations. The 1st order upwind, 2nd and 3rd order ENO and 5th order WENO schemes have been
used to solve for the two test cases. Section 4 presents the results thus obtained. v,

2 Governing Equation

The ideal MHD equations govern the behavior of a conducting fluid in the presence of a magnetic o
field, neglecting dissipative effects like viscosity, heat conduction and electrical resistivity. They are .7
an extension of the Euler equations including terms representing electromagnetic momentum and

energy. Additionally, there is an equation governing the evolution of the magnetic field. Using units .-
such that factors like 47, go and ¢ do not appear, the ideal MHD system can be obtained as [1, 2):

pt+V.(pu)=0 (1)"

(pu)¢ + V.(puu + vP*I —= BB) =0 : @) 3
B+ V.(uB-Bu)=0 ; )"
Ei+V.[(E+P?)u~-(uB)B]=0 . (4)

where P* = P + B.B/2 is the full pressure (defined as the sum.of gas pressure and the 'P?T:ﬁ'ic
pressure) and E = pu.u/2 + P/(y - 1) + B.B/2 is the total energy of the system: Additiona™’
the divergence free condition V.B = 0 needs to be satisfied. Theoretically, if the initial conditions
satisfy this constrai.nt, then the solution at all time satisfies it. However, in numerical computatlfif;
small errors can arise which causes non-zero divergence of the magnetic field. These considerati®
are important while solving multi-dimensional problems. )

The 1D system can be obtained by assuming that the gradients exist only along the x-directio™
The resulting system can be written in conservative form as;
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ahere U 8 the conserved vector and F(U) is the flux vect
or,

[ p ]
pu pu
pv pu’® 4 p*
U= w |, F(U) — puv — B,B,
B - puw — B:B: (6
B: uBy - UB, )
L E J uBz -whB,

. (E+P*)u - B.(uB, + B, + wB,)
In 1D, the zero divergence constraint results in the conditon B

above system. = constant which is satisfied by the

Eigenstructure

The above system, Squsiee (5), is hyperbolic in nature, with seven eigenvalues and a complete set
of eigenvetors. It is not a strictly k.nyperbohc system since five out of seven eigenval plete se
The wave structure of this system is given by the seven waves: g At

o Entropy wave with wavespeed u
o two Alfvén waves with wavespeeds u + c,
o two fast magnetosonic waves with wavespeeds u + ¢ 3]

o two slow magnetosonic waves with wavespeeds u + c,

where i
%=B:/vp ™

2 _17P+BB (YP+B.B,, 4yPB?
Ga= gt 7P 2) ®

These eigenvalues can coincide for two-cases:

o B; = (: In this case, the Alfvén and slow, wavespeeds coincide with the entropy wave and
thus u is an eigenvalue with multiplicity 5. The problem becomes equivalent to a aerodynamic
problem if the gas pressure is replaced with the full pressure. The fast ' magnetosonic wavespeed
is equivalent to the speed of sound. 8

o B2+ B? = 0: In this case, ¢} = maz(a?,¢}) and ¢} = min(a?,c3) where a is the speed of sound
(a = 7P/p). Thus, for a® # c%, the eigenvalues u = ¢, are of multiplicities 2, Additionally, if
a® = c2, then the multiplicities of u % ¢, is 3. This point has been referred to as the “triple
umbilic” in [8].
The cigenvectors for this system, proposed in [13], were incomplete and became singular near these
cases. Brio and Wu (2] used a renormalization process to cnsure that their set of eigenvectors were
well-defined at all points. Presently, two different eigenstructures exist for this system. One has
been proposed by Roe and Balsara [8] and is derived from the governing equations written in terms
of primitive variables. The other has been proposed by Ryu and Jones [14] and is derived from the
governing equations written in terms of the conserved variables. It has been reported [15] that though
both yield the same result in 1D, the Ryu and Jones eigenstructure is unstable leading to negative
pressures and densities in multi-dimensional problems. In the present study, Roe and Balsara’s
eigenstructure has been used.
The left and right eigenvectors proposed by Roe and Balsara [8] are given as follows:

agp 0
*aycy Laycy
:Fa,c,ﬂ,,sgn(B,) 1 ;a,c,ﬂ,,sgn(B,)
r}t = Fayc,B:89n(B:) |, lf =g Fa,csB:89n(B:) (9)
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where the renormalization parameters are given by
= By s B, O}"‘az_cz a,_’-‘“}—a’ 'u
= N - [] o ] g = TR ¥
T \/B3 + B cr—c }-a (12)-
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Near the cases where the eigenvalues coincide, as mentioned above, the treatment of these
is the same as given in [8]. These eigenvectors are derived from the governing equations
terms of the primitive variables (W = [p, u, v, w, By, B;, PJT). To use thesein a scheme bageg

on the conservative form, given by equation (5), they need to be transformed as follows: ”

oW U

= _— S e = oe 7 ¢

Lk lk F19] 9’ Rk awrkv k 11 ) (13)‘

where W /0U and U /W are the Jacobians of transformation between the conserved and prumtwe i
variable spaces [15]. These matrix multiplications were carried and the final expressions were used i
the code. Thus, a complete and well-defined set of orthonormal eigenvectors in the conserved variable
space was obtained. !

=

3 Numerical Scheme .
The semi-discrete form of equation (5) can be written as ;'i
dU; 1 b

a3t T 5z (Fita = Ficyya) =0 (1§_

where i is the cell index and 4z is the length of a cell. A characteristic-based algorithms has been
developed where the flux vector has been decomposed along the wave directions and these components
have been reconstructed in an upwind fashion. The eigenvalues and the eigenvectors Ry and Ly are
evaluated at an averaged state at the interface Uavg(Uj, Uj41). It has been shown in [2, 8 ‘h“
the reconstruction does not depend on the averaged state and thus, an arithmetic mean of densx.ty.
velocity, full pressure and magnetic field has been used to compute the averaged state. Depending
on the sign of the eigenvalue, the starting point of the stencil for flux reconstruction has been chos;n
astori+1. b

Four different reconstructions have been implemented: 1st order (Piecewise Constant), 2nd °“;lq
ENO, 3rd order ENO and §th order WENO. The ENO schemes fall under the class of high raf°h,m°n
methods developed to deal with flowfields containing discontinuities, They are able to maintian 3
high-order accuracy in smooth regions as well as provide non-oscillatory resolution of shocks. ':[1.;ey
have been very successfully applied to the Euler equations. The ENO schemes use adaptive st,encllhBSe
to select the one with the smoothest data among all the candidate stencils. An rth order ENO Sd‘?m
selects the smoothest stencil from r candidates. In the present study, the flux reconstruction versio®
proposed by Shu and Osher [9, 10] has been implemented because of its relative simplidty comp i
to the original solution reconstruction version. The ENO-Roe form [10] has been used which uses °"
reconstruction via primitve (RP) technique to compute the fluxes. e




The ENO schemes suffer from certain drawbacks. One of them is the sensitivity of the adaptive
stencilling procedure to 'round-oﬂ" errors. Another drawback s that the selective procedure is not
necessary in smoqth regions and information may be lost by choosing only one stencil among the
candidates and rejecting others. To overcome these problems, the WENO schemes were developed
[11]. These schemes are based on using a convex combination of all the candidate stencils, instead of
selecting one. The wexgh.t attached. to each candidate stencil is determined based on the smoothness
of data within the stex_lcxl. Th.e weights are defined such that in smooth regions, they approach the
optiinal weights to achieve a higher order of accuracy, while for stencils with discontinuous data, they
approach zero. Thus, an rth order ENO scheme can be modified to give a (2r — 1)th order WENO
scheme. In the present case, a Sth order WENO scheme has been implemented. The weights given
to the three candidate stencils are as given in [12]. '

The semi-discrete equation (16) is advanced in time using the Runge-Kutta multi-stage time-
stepping. it

4 Results and Discussions ,

The schemes developed have been applied to two coplanar Riemann problems as described in [2]. The
first case is an extension of Sod’s shock tube problem and has the following initial conditions: ' -
Shock Tube : WL = [ls 0, 01 01 1, 0, 1], WR = [0.125, 0, 0, 0’ —1, 0’ 0_1] (15)

and B; = 0.75 and 7 = 2. The second case considered is the high Mach number problem. The initial
conditions are as follows: , ; % 1 ‘

High Mach No.: Wy =[1, 0, 0, 0, 1, 0, 1000}, Wr =[0.125, 0, 0, 0, -1, 0, 0.1] ~ ' (16)

and B; =0, v = 2. This is equivalent to a aerodynamical Riemann problem with the full pressure
being equivalent to the gas pressure. All computations are done on a grid containing 800 Ppoints
and a CFL number of 0.8 for 400 time steps. The discontinuity in the initial conditions is located
at.the center of the computational domain. In both the cases, the computed solutions match those
presented in [2, 4, 5, 6, 12). L
Figures (1) to (5) show the variation of density, pressure, tangential magnetic field, normal and
tangential velocities respectively for the shock tube problem for all the schemes. The solution to
this problem consists of a fast rarefaction and a slow compound wave (consisting of a intermediate
shock and a slow rarefaction) moving to the left and a contact discontinuity, a slow shock and a fast
rarefaction wave moving to the right. In figure (1), it can be seen from the density profile that the
resolution of the contact discontinuity is much sharper as the order of the scheme increases, with
the 5th order WENO showing very little smearing. Figures (6) and (7) show a magnified view of
the compound wave in the solution. Once again, it is seen that the higher order scheme result in
considerably lesser smearing. A significant improvement in the accuracy can be observed as higher
order schemes are used. However, a comparison of figure 6 with figure 9 in [2] shows no significant
improvement in the numerical accuracy compared to their 2nd order scheme, having the same amount
of error with respect to the analytical solution. . :
Figures (8) to (11) show the variation of the log of pressure, density, normal velocity and tangential
magnetic field for the high Mach number problem. The Mach number corresponding to the right-
moving shock wave is 15.5. Since this problem reduces to a standard hydrodynamical one with the
Pressure being equivalent to the gas pressure and the fast magnetosonic wave being equivalent to
the speed of sound, the analytical solution can be found [2, 12). Once again, it is observed that the
i’searing over the contact discontinuity reduces considerably as higher order schemes are used (figure

_I" both the cases considered here; it is seen that the 5th order WENO scheme produces some
oscillations near the rarefaction waves as well the contact discontinuities. These oscillations are
Negligible in the results presented here but much more noticeable for computations on a coarser grid
or lower order time-stepping. Similar oscillations have been observed in [12] and are probably caused

4e to the higher-order approximation. ‘
U8, a characteristic-based algorithm has been constructed using 1st order upwind, 2nd and
'@ order ENO and 5th order WENO reconstruction. The results indicate that the higher order



onsiderably better resolution compared to the 1st ordey
scillations shown by the 5th order WENO. Also, the 5 }: eme g,
ion than the 2nd and 3rd order schemes. However, the sch ordeg . the
here are computationally intensive compared to schemes like Lax-Friedrich since theme-.
ts components along the characteristic directj, :'y invgly, t}:d

e

non-oscillatory schemes show ¢
MHD equations, despite some o

decomposition of the flux vector into i ‘
obtained indicate the algorithms are sufficiently robust to handle loss of hyp erbOIicit.y € regy,

both the test cases were coplanar Riemann problems, which has an unique solution, Thy, H""eve,
shocks in non-coplanar problems with “°n'uniq:’e Questo,,

regarding the admissibility of intermediate :
are unresolved. lutj,
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