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Abstract

In recent years, there has been a growing interest in the numerical solution of the MHD system,
particularly the idealized system, which is obtained by neglecting dissipative effects. High-
resolution schemes, applied successfully to the Euler equations, have been tried for the ideal
MHD system. The non-convexity and coincidence of eigenvalues for some conditions raises ad-
ditional questions regarding the straightforward application of Godunov-type schemes and the
admissibility of various non-evolutionary discontinuities. In the present study, the Essentially
Non-Oscillatory and the Weighted Essentially Non-Oscillatory class of schemes are applied to
the 1D ideal MHD equations. A characteristic-based algorithm is used where the flux vector
is resolved along the characteristic directions and reconstructed in an upwinded manner. The
algorithm is validated on benchmark 1D problems. The problem of higher order Weighted Non-
Oscillatory Schemes showing oscillatory behavior for the ideal MHD system is addressed using
a solution-dependent monotonicity-preserving limiting technique which has been proposed in
literature. An attempt is made to refine the use of this limiting technique by studying behavior
of the constituent characteristic fields of MHD using simplified systems. These systems share
the mathematical characteristics of the ideal MHD equations and thus the solutions are ex-
pected to be topologically similar. Conclusions drawn from the simplified systems are extended
to the ideal MHD system and a selective use of the limiting technique is incorporated to yield
a more robust algorithm. Simultaneously, issues regarding the admissibility of MHD waves
and pseudo-convergence are studied further and the convergence behavior of the algorithm de-
veloped is analyzed. It is seen that the algorithm developed suffers from identical problems of
non-uniform convergence as mentioned in literature. Along with these studies, a high-resolution
algorithm which uses ENO/WENO-based solution reconstruction is implemented for the 2D
MHD system. The flux computation is based on the Roe scheme with the Harten’s entropy fix.
The code is validated on a range of problems using Cartesian grids and representative results

are presented.

Keywords: Ideal Magnetohydrodynamics, ENO, WENO, characteristics, high-resolution schemes,

model systems, MP limits, oscillations, pseudo-convergence
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Chapter 1

Introduction

The equations of ideal magnetohydrodynamics (MHD) describe the flow of a perfectly conduct-
ing, inviscid fluid in the presence of a magnetic field [1, 2]. The dynamics of a conducting ftuid
can be described by extending the Navier-Stokes equations to inctude terms for momentum and
energy exchange between the fluid elements and the electromagnetic field. The evolution of the
electric and magnetic fields are governed by the Maxwell’s equations of electro-magnetics. The
ideal MHD equations are obtained by a series of simplifying assumptions (like perfect conduc-
tivity, neglecting dissipative mechanisms and displacement currents, macroscopic neutrality,
etc) which are valid for a large class of plasma flows. Thus, they can be viewed as an exten-
sion of the Euler equations of gas-dynamics incorporating the momentum and energy terms
due to the interaction of fluid elements with the magnetic field. Along with the modified fluid
equations, the evolution of the magnetic field is governed by the “induction equation”. These
equations find application in a wide variety of subjects like controlled fusion reaction [2], the
flow of astrophysical jets [3] and flow around hypersonic vehicles [4}.

Following the success of Godunav-type schemes in gas-dynamics, these schemes have been
applied to the equations of ideal MHD [3, 4, 5, 6, 7. From the numerical viewpoint, the
ideal MHD equations form a non-strict hyperholic system with a non-convex flux function [5].
In the one-dimensional (1D) system, these equations admit seven eigenvalues where upto five
can coincide. The non-convexity of the flux function raises additional questions regarding the
admissibility of a class of intermediate waves which are not observed in convex systems like
the Euler equations [8, 9, 10, 11, 12}. These issues are yet to be resolved and raises questions
regarding the applicability of Godunov-type schemes in ideal MHD. Nevertheless, efforts have
been made to solve the ideal MHD equations numerically using information based on the local
wave behavior. Brio and Wu [5} introduced an upwind differencing scheme for the 1D system
which was based on a Roe-type approximate Riemann solver and demonstrated its superiority
over earlier methods. The drawback of their scheme was that a Roe averaged Jacobian could not
be found except in the case 4 = 2. Zachary and Collela [6} applied a modification of the Engquist
- Osher flux to the equations of 1D MHD. The eigenstructure of the 1D MHD system has also
been studied and the eigenvectors proposed by Roe and Balsara (13} have been accepted. Cargo
and Gallice [14] outlined the construction of Roe matrices for the ideal MHD system for the
general case though their results do not show marked improvements over schemes using simple
arithmetic averaging. The insensitivity of the computed flux to the averaged interface state was
shown in [13} and thus, most schemes use arithmetic averaging to find the interface state and
compute the eigenvalues and eigenvectors. Extension of these 1D schemes to multi-dimensions



have not been straightforward 3, 7} and methods used to ensure the solenoidal nature of the

magnetic field have been employed. . . _
i‘nhe Essentially Non-Oscillatory (ENO) [15, 16, 17) and Weighted Essentially Non‘OSClllmO[\,

(WENO) [18, 19] family of schemes have been applied to fhe E“:;:q:‘::zns ZS well as th,
equations of electro-magnetics with excellent results. Prevu;lus I\:HD SP d ve20 een made ¢,
apply the flux-differencing form of the WENO schemes to the 8 ycsh em [20, 21] aéd the
results are encouraging. In the present study, the ENO and WE lS 'emes are applied (,
the equations of ideal 1D MHD and the performance of these hxgl‘l-r&o ?;OnﬁSChemes are ?Om-
pared for the two coplanar MHD Riemann problems formuh.ated in [5]. The first .problem is an
extension of the Sod’s shock tube with anti-parallel magnetic 'ﬁeld and the solution contains ,
slow compound wave, apart from regular shocks and rarefactlox.ls. The second prob.lem -
High Mach number problem, which can be formulated as an equivalent hydIOd}fnamlc pr.oblem
with the full pressure corresponding to the gas pressure [5]. Thus, ‘m analytical solution (6]
is possible with which the computed results are compared. The &%lgonthm developed employs
characteristic decoupling which decomposes the flux vector into its oompon.ent along each of
the seven characteristic directions. These components are reconstructed -usmg. ENO/WENO
interpolation and upwinding is done based on the sign of the oorrapondmg. eigenvalue. The
results computed by the higher order non-oscillatory schemes are compared with the first order
i and with results presented in literature.
upw.;lngx:?;mtehe WENO schemes are theoretically expected to exhibit non - OSCillat.ory be-
havior, numerical experimentation show that higher order WENO schemes show considerable
oscillations for certain classes of problems (see discussions in [23}). The WENO class.of schefrles
have been applied to the equations of ideal MHD [20, 23] and in both these studies, .olscﬂla-'
tory behavior has been reported for fifth and higher order WENO s<':hemes.. Such oscil ator?
behavior is also seen in the present study and is seen to occur at rela.tlve.ly hfgh CFL numbers.
A limiting procedure has been proposed in [24] to alleviate these oscillations whe;e m.c:rlﬁ
tonicity preserving (MP) limits are applied to the reconstructed fluxes. The bounds w; =
which the reconstructed value should lie are determined based on the local curvatu're od‘Ir r
solution. Different curvature measures at the interface have been proposed [24] v.vhlc.h i ;?n
in their categorization of an oscillation as a genuine extremum or a spl.lrious oscl‘llatllo;-IHD
the present study, an attempt is made to refine the use of these MP limits to t'he 1dfea s
system by isolating specific characteristic fields which contribute to the genetatlon' o : :Pwoum
oscillations. While the results in [23] are encouraging, selective use of the MP limits R
result in lower computational cost. To study the behavior of the WENO schemes on ;Pls =
characteristic fields, the model systems presented in [25, 27] are emplo.yed. These 1110t e:n nd
simplified systems which contain specific waves similar to those in the 1dez?.l MHD S}’s’n \HD
has been used in [25, 26] to study the admissibility of shocks in MHD. ?mce wave?sl: s
are symmetric around the fluid velocity, a 3 x 3 system has been derived in [25] whic
the right-running (with respect to the fluid velocity) waves in MHD (slow, fast
While the Alfvén characteristic field is linearly degenerate, the slow and fast modes ar

and Alfvén):
ther
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linearly degenerate nor genuinely non-linear. This is a result of the non-convex flux function.
The reduced system is non-strictly hyperbolic with eigenvalues coinciding like the ideal MHD
system and thus, the solutions are expected to be topologically similar to the ideal MHD sys-
tem. In the present study, the behavior of the Alfvén characteristic field is initially studied
using the 2 x 2 rotationally degenerate system with a cubic flux function [27]. This system
consists of two characteristic directions (fast radial and slow angular), one of which is linearly
degenerate. The magnetosonic modes (slow and fast) are studied using a set of planar Riemann
problems for the 3 x 3 model system. Since the problems are planar, the Alfvén mode is absent.
It is seen that the magnetosonic modes exhihit oscillations when higher order WENOQ schemes
are applied. These oscillations are seen for shocks, rarefactions and compound waves of either
family (slow/fast) but the severity differs. Application of the MP limits is seen to alleviate the
oscillations and while this is indicative of the requirement of MP limits for the slow and fast
characteristic fields in ideal MHD, the efficacy of these limits on the two systems (model and
ideal MHD) may differ. The rotationally degenerate model system does not exhibit any oscilla-
tions and it can be concluded that the Alfvén mode in ideal MHD does not require any limiting
treatment. This is subsequently verified by considering non-planar Riemann problems of the
3 x 3 model system. Based on these observations, the characteristic-based algorithm developed
for the 1D ideal MHD equations is modified to incorporate MP limits on the magnetosonic and
entropy modes and its performance is evaluated on benchmark 1D Riemann problems (Brio &
Wu'’s shock tube [5] and High Mach No. problem [5, 6]). Additionally, non-planar modifications
of the Brio & Wu’s shock tube (similar to those considered in [21)) are solved to study the be-
havior of the Alfvén mode. The oscillations arising from the higher order WENO schemes are
seen to be effectively treated using these limits. As a comparison, the CPU times required for
computations with MP limits applied to selected modes are compared with those with the limits
applied to all modes. It is seen that while the use of MP limits increases the computational
cost by a considerable amount, there is a significant reduction of computational cost through
refining the use of MP limits. These reductions are amplified for finer grids and thus, it is
expected that the savings in CPU time will be considerable for extensions to multi-dimensions.
One of the major problems in the straightforward extension of schemes used for the Euler
equations to the MHD system arises from the latter’s non-convexity. This has led to a debate
regarding the admissibility of MHD shocks, which has not been resolved. It is believed by one
school of thought that the only physically meaningful shocks are those which are evolutionary
in nature, i.e, those across which only one family of characteristics converge [28]. Intermediate
shocks, across which more than one family of characteristics converge, are not admitted as
physically correct solution. However, it has been shown through numerical computations in
[5, 9, 10} that intermediate shocks can exist although the existence of a purely rotational
discontinuity is not admissible [25, 26]. Analytical studies as well as astronomical observations
have also reported the existence of intermediate shocks. However, the admissibility of such
shocks is still questioned since they are non-evolutionary in nature. It has been concluded in
[12] that non-evolutionary waves, like intermediate shocks and compound waves disintegrate at
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large times to regular shocks and Alfvén waves unless they cause fa rotation dof thetr::gdr;:;lc ﬁ:]’d
by 7. Their stability is dictated by their internal structure v-vhlch del?en sdoxvxv e lfnz 1:) e
mechanisms. Thus, intermediate shocks, as seen in the solution of Brio an u's shock tube
problem, should be allowed in the numerical solutions of the MHD equ'atlons. ch:v./ever, one.of
the pitfalls here is that these shocks depend on the dissipative mech&nlsr.ns fc:; t .elrt-propferttl;s
and thus, any solution containing them will be sensitive to the numerical 1ssxpa? ion 1'n e
scheme used. Thus, to capture the correct solution, it is believed. l?y s.ou-xe that .mclu.:on of
the dissipative terms for viscosity, resistivity and thermal conductivity 1s 1mperat1.ve, .t ?reﬁy
questioning the practical relevance of the ideal MHD equations. These issues are 1ntr1flsxca y
related to the occurrence of “pseudo-convergence”, seen for a class of non-planar Rlemafm
problems (21, 22]. This non-uniform convergence has been demonstra.bed for sox'ne sp(;cx(ail
Riemann problems and it has been reported that till a certain level of g.nc.l-ﬁnen&s is refm ed,
the numerical solution seems to converge to an incorrect solution containing non-evo}utlonary
waves like intermediate shocks and compound wave - like structures. These observations have
been demonstrated using initial conditions which are small perturbatifms to non-planar s?wck
tube problems. In the present study, these issues are studied in details for the 1D algorithm
devgli:zftaneously, the 1D algorithm is extended to 2D. This has necessitated thfz use of the
8-wave formulation [3, 29] to maintain the solenoidal nature of the computed SOluthl'], thereby
resulting in non-conservative governing equations. Presently, a higher-order extension of the
Roe’s scheme using ENO/WENO reconstruction is implemented where the components of the
decoupled state vector (characteristic variables) are reconstructed using the 2nd and 3rd or<'ier
ENO and the 5th order WENO schemes. The state vector and the flux are reconstructed using
higher order interpolation via characteristic decoupling. A number of. test cases have been
solved for to validate the the code and these include hydrodynamic Riemann pr.oblems [30],
oblique shock reflection problem, blast wave problem (with and without magnetic field) [31],
the rotor problem [32], the cloud-shock interaction problem [32] and the Orszag-Tang vortex
problem [7]. Representative results are presented.

Chapter 2
Plasma Dynamics and Ideal Magnetohydrodynamics

A large variety of electrically conducting fluids which are neutral on the macroscopic scale are
defined by the term plasma. A collection of free electrons and ions have to satisfy certain criteria
(1, 2] to qualify as a plasma. One of the features of plasmas is that they exhibit a collective
behavior with the each particle motion governed by the coulombic and magnetic fields due to
surrounding particles as well as external fields. It is often thought of as the fourth state of
matter. At high temperatures, the atoms in gases ionize due to collisions since the thermal
kinetic energy is enough to overcome the binding energy of outer electrons. One distinguishing

feature is that the transition from the gaseous state to the plasma state is gradual and occurs
over a range of temperature,

changes.
The first criterion,

unlike the sharp transition at constant temperature for other phase

which ionized gases have to satisfy to qualify as a plasma is macroscopic
neutrality. On a macroscopic scale, it is required that the fluid be electrically neutral. The
minimum length scale over which the fluid has to be neutral should be large enough to contain a

large number of charged particles but small enough compared to the variations in MAacroscopic

parameters like pressure, density, etc. The maximum length scale over which charge separation

may be allowed is called the Debye length. It can be estimated from the fact that the potential

energy due to the charge separation should not exceed the thermal

kinetic energy of the fluid.
It ranges from 10—

mm for laboratory plasmas to few meters for interstellar gases. The Debye
length is also an estimate of the length scales over which the Coulombic influence of one particle

is felt by others. Within this distance (inside the Debye sphere), particles arrange themselves
80 as to shield any electrostatic field inside.

is that the number of electrons inside the Del
which follows from macroscopic neutrality,
flow should be much larger than the Debye
and thus conductivity,

The second criterion for definition of plasma
bye sphere be very large. The third criterion,
is that any characteristic length scales in plasma
length. Additionally, to ensure electron mobility
it is required that the average time between electron - neutral particle

collisions be much larger than characteristic time scales of the plasma flow (over which physical
parameters are varying).

Plasmas can be produced by raising the temperature of a fluid such that a high degree of
ionization is obtained. Such plasmas, which are in thermodynamic equilibrium,
astrophysical flows. Example of naturally occurring plasmas are the solar plasma,
the planetary magnetosphere,
by photo-ionization (

to jonize the fiuid) and electric discharge (

are found in

solar wind,
the jonosphere, etc. Laboratory plasmas are usually produced
where radiation of frequencies in the UV / X-ray / Gamma rays is used

where strong electric fields are used to energize free
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electrons which in turn ionize neutral particles through collision). Some engineering applicationg
of plasmas are thermonuclear fusion reactions, MHD generatcr and the plasmaf propelled I'.ocket.
Presently, there are four different theoretical models of plasma dynamics, ea.(.:h with itg
own set of assumptions, that are used to study various plﬂsm} Plfemmena- These 1n§1ude the
particle orbit theory, the statistical approach leading to the kmet"f’ the.ory, the two-fluid or the
many-fluid theory and finally, the magneto-hydrodyn&mic approximation.
2.1 The Magnetohydrodynamic Approximation
The MHD model is based on the single - fluid, continuum assumption and treats the plasma as
a single conducting fluid, having all the normal characteristics of a fluid. It may be composed
of many different species (charged and neutral) and the total parameters are the summed /
dividual species. Thus, the model is a set of equations

averaged value of the parameters for in
governing the evolution of macroscopic variables like density, momentum, energy and the mag-

netic field. Electrical conductivity of the medium leads to an interaction between the fluid and

the electromagnetic (EM) field which have to be accounted for in the momentum and energy
kes equations of fluid dynamics are extended to

conservation equations. Thus, the Navier Sto
include terms quantifying the EM force acting on the fluid and energy exchanged between the

EM fields and the fluid.

2.1.1 Mass Coﬁservation

The continuity eqﬁation is identical to its hydrodynamical counterpart and can be expressed

in point form as

op

5 + V(pu) =0 (21)

2.1.2 Momentum Conservation

The total momentum of the particles of plasma is a conserved quantity and changes due to
the body forces and surface forces. For a conducting fluid, in addition to fluid pressure and
viscosity, fluid elements will experience an electromagnetic body force (an electrostatic force
and the Lorentz force) which can be expressed as pE+J xB. The equation of motion can
thus be expressed as

A(pu ) '
%)=p¢E+J xB—V.(pI+%puu)+1/J (22)
where Z is the 3 X 3 identity matrix and % is the viscous term.
2.1.8 Energy Conservation
For & volume moving with the fluid, enclosing the same amount of fluid, the rate of increas®
f change

in energy is sum of the rate of change in the kinetic energy (3 p%‘—:) and the rate o

6

internal energy (p%). This change has to be balanced by the energy inputs which are primarily
from three sources: rate at which the electromagnetic energy enters the volume (E.J), energy
entering through heat conduction and diffusion of species and the rate at which the’ surface
forces of pressure and viscosity does work. Thus, the equation for energy conservation can be

expressed as
1D De
2/’ Dt + Pﬁ =—pVu+EJ+¢ (2.3)

where ¢ represents terms related to heat conduction, diffusion and work done by viscous forces.

2.1.4 Mazwell’s Equations

In addition to the three equations governing the evolution of fluid parameters, the evolution of
the electromagnetic fields is governed by the Maxwell’s equations, which can be expressed as:

JB
E +VxE=0 (24)
D
E—VXH+J=0 (2.5)
V.D=p. (2.6)
VB=0 (2.7)
gupplemented by the equation for charge conservation, which can be expressed as:
9pe
e +VJI=0 (2.8)

tmd the generalized Ohm’s law which can be expressed as
J=0(E+uxB) (2.9)

Thfz sy.st,em consisting of egs. (2.1) to (2.9) is the complete magneto-hydrodynamic system,
which is the counterpart of the Navier - Stokes equation for fluid dynamics.

2.2 Simplifications and the Ideal MHD Equations

When applied to practical cases, the complete MHD system, represented by egs. (2.1) to (2.9)
are never used. A number of approximations and assumptions are used to simplify the system
glfld obtain the ideal MHD equations. One of the approximations used is the neglecting of the
dlsPlacement current, compared to the conduction current. For a sinusoidal variation of E, the
ratio of amplitudes of the displacement current with the conduction current can be foundyas

€(OE/8t)maz

S (2.10)

€w
==~ %
g

Thus,. for low frequency phenomena (for frequencies not higher than the microwave range)
the displacement current can be neglected. Also, by the criterion of macroscopic neutrality of
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e zero. Thus, current flow due to floy of

plasma, the free charge density p. can be assumed to b
free charge (peu) can be neglected compared to the con!

he magnetic forces.
body forces can be neglected compared to t : o
In addition to these assumptions, the dissipative mechanisms like viscosity, thermal condyc.

tivity, diffusion and electrical resistivity are neglected. Assumption of the fluid being a perfect

electric conductor results in the simplification

duction current. Also, the electrostatj,

=-uxB (2.11)

With these simplifications, the ideal MHD system can be obtained as [1, 2]:

pt+ V.(pu) =0 (Mass conservation)
(pu)e + V.(puu + P°Z — B2) = 0 (Momentum Conservation)
B + V.(uB — Bu) = 0 (Induction Equation)

E,+ V.[(E+ P*)u— 1(uB)B] =0 (Energy Conservation) (212)

where P* = p+ B.B/2p is the full pressure (defined as the sum of gas pressure and the
magnetic pressure) and E = pu.u/2 + p/(y — 1) + B.B/2p is the total energy of .the sy%tem_
Additionally, the divergence free condition V.B = 0 needs to be satisfied. Theoretically, if the
initial conditions satisfy this constraint, then the solution at all time satisfies it. However, in
numerical computations, small errors can arise which causes non-zero divergence of the magnetic
field. These considerations are important while solving multi-dimensional problems.

2.3 Effect of a Magnetic Field

One of the ways of understanding the effect of the magnetic field is through the magnetic stress
tensor. From the momentum equation of the ideal MHD system, eq. (2.12), it is seen that
the magnetic force can be expressed as the gradient of the magnetic stress tensor which can be
expressed as

_lep_lp (2.13)
T = p(BB 2B T)
which can be expressed in matrix form as

| (B2-BY2) BB,  B.B,
4
T.=>| BB. (B2-B¥2) BB, (214

# 2

B.B; B.By  (B?-B?%/2)

N

Assuming a local coordinate system, where the z-axis is aligned with the magnetic field (B =
Bz), the principal stresses can be obtained as

-B*2 0 0
2,
1l o o B

8"

which can be expressed as

00 0 B2 ¢ 0
1 1
Tm = ; 00 0 + 2— 0 _B2 0 (2.16)
00 B? lo o -m

Thus, the effect of the magnetic force on the fluid element is an isotropic magnetic pressure
of B%/2y and a tension of B2/p along the magnetic field lines. The magnetic pressure can be
added with the fluid pressure to give the full pressure.

Another effect of the magnetic field in a highly conducting medium is the freezing of the
field lines to the fluid. This implies that the magnetic field lines move along exactly with the
fluid. This can be mathematically proved from induction equation of the ideal MHD system,
eq. (2.12), by considering the conservation of magnetic flux through a small surface whose each
point moves with the local flow velocity [2]. Thus, any motion along the magnetic field lines
is not restricted while any motion perpendicular to them carries them along. This is expected,
since any perpendicular motion will cause an induced electric field —u x B. For a fluid with
infinite conductivity, this implies that the perpendicular velocity component be infinitesimally
small so that the current remains finite.

2.4 MHD Waves

While in the case of a non - conducting fluid the only type of wave motion possible is the
longitudinal sound wave, a conducting fluid immersed in a magnetic field admits other types of
wave motions. It has been seen in the previous section that the effect of an external magnetic
field B is an isotropic pressure of B2/2y as well as a tension of B2/p acting along the magnetic
field lines. Thus, fluid elements along the magnetic field lines behave in a manner similar to a
string under tension. - Thus, an additional mode of wave propagation, which is the transverse
mode, called the Alfvén wave is possible in this case. The speed of wave propagation along the
direction of the magnetic field can be found as:

density

@17)

which is known as the Alfvén speed. In this mode of propagation, the fluid velocity and the
magnetic field components transverse to the field lines vary with time, while all other properties
remain constant.

Longitudinal waves, also known as magneto-sonic or magneto-acoustic waves, occurring in
such fluids differ in nature depending on the direction of wave propagation. It has been seen
that the magnetic field lines are frozen in the fluid and thus, any fluid motion perpendicular
ta the field lines cause the field lines to move with the fluid. Thus, when the direction of
Propagation is along that of the magnetic field, the waves are identical to pure sound waves,
causing no perturbation to the magnetic field. Expectedly, the speed of propagation is that

9



e 2.1: Variation of MHD wavespeeds with angle: (a) Speed of sound lesser than Alfven speed

Figur
(b) Speed of sound greater than Alfven speed [2]

of sound (a = /vp/p). Perpendicular to the magnetic field, the wave propagation causes the
magnetic field lines to move. Thus, the magnetic field lines compress and rarefact along with
the pressure and density. The wave-speed for this motion can be derived by considering the
full pressure (sum of fluid and magnetic pressure) and can be expressed as:

V= E_,_(_Bi/ﬂ:‘/aﬂ_'_,q'b’
P P
Thus, parallel to the magnetic field, there are two waves propagating:: the transverse Alfvén
wave and the longitudinal sound wave; while perpendicular to the field, there is only one type
of wave motion, the longitudinal magneto-acoustic wave. . t
In any arbitrary direction, the MHD equations for small perturbations to the steady sta f;
yields three solutions. One of them is the Alfvén wave, which carries the perturbations nor.mé‘i
to the plane defined by the external magnetic field and the direction of propagation. Thus it 15
a transverse wave and its wavespeed is seen to be

(2.18)

G A B;%" (2.19)

where A = B/,/jip is the Alfvén velocity while k is the direction of propagation of the W;"‘;
and 6 is the angle between the wave propagation direction and the applied magnetic field. }‘:e
propagation along the field, this reduces to eq. (2.17) while for propagation normal to ies
field, this mode does not exist. The other two modes constitute a system of coupled.“';li 5
through which quantities line the pressure, density and in-plane components of magnetic hcse
and velocity vary. These are known as the slow and fast MHD waves. The wavespeeds of the
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modes are given by

Ga= %[(ﬂ2 + A% \/(a? + A2)2 = 4a2A%cos0)

where ‘+’ corresponds to the fast wave while ‘—’ corresponds to the slow wave.

If the Alfvén speed is greater (lesser) than the speed of sound, then, parallel to the magnetic
field, the fast (slow) wave combines with the transverse wave and the slow (fast) wave behaves
as a pure sound wave. Perpendicular to the magnetic field, only the fast MHD wave exists with
propagation speed given by eq. (2.18).

Figure (2.1) illustrates the variation of the three wavespeeds with the angle between the
magnetic field and propagation direction.

(2.20)

2.5 Computational MHD

Due to the complexity of the MHD system, analytical solutions are not possible except in case
of very simple cases. This has led to a growing interest in the numerical solution of these
equations. Over the past two decades, a number of numerical schemes have been applied. The
eigenstructure of the system has been investigated while different methods have been developed
to handle the additional complexities arising from non-convexity and the necessity of ensuring
solenoidal magnetic fields.

The ideal MHD system, eq. (2.12), can be written in the conservative form as:

%+v.f=om%+%+%+‘;—t=o

where u is the state vector of dimension eight, consisting of the conserved quantities and f, g
and h are the flux vectors in the Cartesian directions.

(2:21)

L pu
P pu? + P*
pv puv — ByB;
u= e 5 f= puw — Bsz ,
B, 0
By uB, —vB;
B, uB, —wB;
| E | (E + P*Yu— B(uB; +vB, + wB;) |
E . ] ; u -
pvu— B; B, pwu — B, B,
pv? + P* pwv — ByB,
pvw — B, B, pw? + P* 1
g= ,h=
vB; —uB, wB, —uB,
0 wBy —vB;
vB, —wB, o
| (E+ P*)v — By(uB; +vB, +wB:) | | (E+ P"yw— B.(uB; +vB, +wB,) |
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n the quasilinear form as
du Vu = 0
—+ Ay Bl C)'
= (

rices (A,B,C) form a non-strictly hyperhq;,

ing the entropy wave and the left and right going

: isenvalues representin! i
ing seven eigen peeds as given in egs. (2.19) and (2.20). The eight),

Eq. (2.21) can be written i
(2 221
It has been seen that the 8 x 8 Jacobian mat
system, admitt
slow, fast and Alfvén waves with waves ]
' i ture.

i ich is non—phymcal in na .
eigenvalue has the value 0 which it O high-resolution, upwind schemes have -

. . . 5 5 "
Starting with Brio and Wu 5] vom reduces to a set of 7 equations, thus giving 5

i tem. In 1D, the sys s >
;p: l;e(.i]at;;:l:nlml@)aiy"sm This is b;cause the divergence free condition on the magnetic ficlg,

when applied to the induction equation of €g. (212) mf‘ults;; B, = = ctonsiant. The eigep.
structure of this 7 x 7 system has been extensively studied. ane elgensNruc ure proposed by
Jeffrey and Taniuti (Non-Linear Wave Propagation, A-cademlc Press, New York, 1?64) Was
seen to be singular in cases where the eigenvalues coincided (cases where the magnetic field i

parallel or perpendicular to the direction of wave propagation, in the 1D case, X). Brio and Wy

roposed a renormalization procedure to bandle this but their set of eigenvectors still containeq
P agnetic field is aligned to the direction

i i “tri ilic” poi here the m:
a singularity at the “triple umbilic” point W : .
of propagation and the Alfvén wave-speed coincided with the speed of sound. They applied a

Roe-type upwind scheme but could construct the Roe-averaged Jacobian a%t the interface only
for special case of y = 2. For other values of v, they used arithmetic averaging for the primitive
variables. In the same study, the non-convexity of the MHD system was demonstrated. It has
been shown that for case when the speed of sound is greater (lesser) than the Alfvén wave-speed,
the slow (fast) characteristic field becomes degenerate when the transverse magnetic field goes
through zero. This is the numerical manifestation of the non—isotropic wavespeeds seen in the
previous section. In their numerical experiments, this non-convexity was seen in the form of the
slow compound wave, which is seen in the implementation done here too, as described in the
next chapter. The two coplanar 1D problems used by Brio and Wu have become benchmarks
to test 1D MHD codes and are solved for in the current study.

Similar efforts on the 1D system have been made by Zachary and Collela [6] where the'y
have applied a modification of the Engquist - Osher flux. Their system of eigenvectors .ls
similar to that of Brio and Wu except that they have derived it from the equations written in
terms of the primitive variable (with the inverse of density instead of density). The HLL class
of approximate solvers have also been applied to the 1D system with excellent results and a
complete discussion regarding the performance of these methods on the MHD system can be
found in [34] and references therein. Roe and Balsara [13] have proposed a complete 5¢t Sf
left and right eigenvectors which are well-defined at all points including the “triple umbilic":
However the drawback of their eigen-system is that it has been derived from the 1D system
written in terms of primitive variables. Thus, to use it in conservative schemes, they hav'e‘to
be appropriately pre-/post-multiplied with the Jacobians of transformations between primitive
and conserved variable space. Cargo and Gallice [14] have proposed a method to find a Ro&
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averaged matrix for the interface for any value of . However, it has been demonstrated in [13]
that the computed flux is insensitive to the choice of averaging and thus, most schemes use
arithmetic averaging.

Attempts at extending 1D schemes to multi-dimensions have shown that a straightforward
extension is not possible. One of the major obstacles is the necessity to ensure a divergence free
magnetic field in the numerical solution. Neglecting this aspect may lead to non-physical solu-
tions. It has been shown in [35} that for non-zero divergence of the magnetic field, the magnetic
flux, momentum and energy are not conserved quantities since the momentum conservation,
induction and energy conservation equations of the ideal MHD system, eq. (2.12), cannot be
written in strict conservation form. Another non-physical effect of non-zero divergence is a
non-zero component of the Lorentz force parallel to the magnetic field. Thus, in view of these
inaccuracies, it is imperative that the solenoidal nature of the magnetic field be maintained
at all time steps. While in 1D, this reduces to a simple condition of B, = constant, which is
satisfied by not including B, in the evolution equations; in multi-dimensions, it is equivalent
to zero total magnetic flux through the cell boundary edges/surfaces.

VB=0= > Bhds=0

faces

(2.23)

Thus, unlike the 1D case, a jump is allowed in the normal component of the magnetic field as
long as the above equation is satisfied. Presently, there are three different approaches being
used to ensure this condition:

e Projection Scheme: A Poisson equation is solved which is used to subtract of the portion
of the magnetic field with non-zero divergence. This method has been formulated in [35}.

o Constrained Transport / Central Difference (CT/CD) using a staggered mesh: This
method involves a discretization on a staggered grid for the magnetic field variables which
are updated using Godunov fluxes. Zero divergence is obtained to the order of round-off
errors. This method has been used in (7]

Eight-wave formulation: This method has been suggested in [29] and applied in [3]. The
multi-dimensional MHD system is modified to include source terms proportional to V.B.
This leads to an eight-wave eigenstructure with an additional wave as the “divergence
wave”. The drawback is that the formulation is not strictly conservative and thus, inac-
curacies may result in shock-capturing.

Multi-dimensional solvers based on these methods have been used to simulate many astrophys-
ical problems like the interaction of the solar wind with the planetary magnetic field (3} and
hypersonic blunt body computations [4].
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Chapter 3
1D MHD System

The 1D system can be obtained from the ideal MHD system, eq. (2.12), by assuming that the

gradients exist only along the x-direction. The resulting system can be written in conservative
form as:

u +f(u), =0 (3.1)

where u is the conserved vector and f(u) is the flux vector.

[ ] i
ﬁ puwv — ByB;
u=| pw |, f(u)= puw — B, B, (3.2)
B, uBy —vB;
B, uB; —wB;
E | | (E+ P*)u—B.(uB. +vB, +uB,)

In 1D, the zero divergence constraint results in the condition B, = constant which is satisfied
by the above system.

3.1 The 1D MHD Eigenstructure

The above system, eq. (3.1), is hyperbolic in nature, with seven eigenvalues and a complete
set of eigenvectors. It is not a strictly hyperbolic system since five out of seven eigenvalues can
coincide. The wave structure of this system is given by the seven waves:

e Entropy wave with wave-speed A, = u
e two Alfvén waves with wavespeeds z\f =utc
e two fast magneto-sonic waves with wavespeeds A}* =uztcy

e two slow magneto-sonic waves with wavespeeds A\¥ = u +¢,
where
¢a=B:/\p (33)

w+BB w+BB,, 4pB? 3.4

as derived from eqgs. (2.19) and (2.20) for propagation along the x-direction. Figure (3.1)
illustrates these waves. These eigenvalues can coincide for two cases:

1
0 5[
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Figure 3.1: Waves in 1D

e B; =0 (Direction of propagation is perpendicular to the magnetic field): In this case, the
.. Alfvén and slow wavespeeds coincide with the entropy wave since ¢, = ¢, = 0 and thus u
is an eigenvalue with multiplicity 5. The problem becomes equivalent to a aerodynamic

problem if the gas pressure is replaced with the full pressure. The fast magneto-sonic
wave-speed is equivalent to the speed of sound.

® B2+ B? = 0 (Direction of propagation is parallel to the magnetic field): In this case,
(¢ =maz(a? ) and & = min(a?,2) where a is the speed of sound (a = vp/p). Thus,
for a® # c2, the eigenvalues u % ¢, are of multiplicities 2. Additionally, if a? = ¢2, then

the multiplicities of u & ¢, is 3. This point has been referred to as the “triple umbilic” in
[13].

The eigenvectors for this system, proposed by Jeffrey and Tanuiti, were incomplete and became
singular near these cases. Brio and Wu [5] used a renormalization process to ensure that their
set of eigenvectors were well-defined at all points. Presently, two different eigen-structures
exist for this system. One has heen proposed by Roe and Balsara [13} and is derived from the
governing equations written in terms of primitive variables. The other has been proposed by
Ryu and Jones (Numerical Magnetohydrodynamics in Astrophysics: Algorithm and Tests for
One-Dimensional Flow, Astrophysics Journal, 442 (1995), pp. 228 - 258) and is derived from
the governing equations written in terms of the conserved variables. It has been reported M
that though both yield the same result in 1D, the Ryu and Jones eigenstructure is unstable
leading to negative pressures and densities in multi-dimensional problems. In the present study,
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Roe and Balsara’s eigenstructure is used. Near the cases where the eigenvalues coincide, as
mentioned above, the normalization of the eigenvectors is the same as that used in [13]. These
eigenvectors are derived from the governing equations written in terms of the primitive variableg
(w=[p, u, v, w, By, B;, pJT). To use these in a scheme based on the conservative form,
given by eq. (3.1), they need to be transformed as follows:

ow du
T bl ==y k=T 3.5
L=k 2’ Ry awl‘k, ( )
where dw/8u and du/dw are the Jacobians of transformation between the conserved and
primitive variable spaces [3, 7]. These matrix multiplications are carried out analytically and
the final expressions are used in the code. Thus, a complete and well-defined set of orthonormal

eigenvectors in the conserved variable space is obtained.

3.2 1D MHD Wave Structure

Although the Euler equations are underlying in the MHD system, the wave structure is sub-
stantially more complicated than that in gas-dynamics. The primary reason for this is the
non-convexity of the MHD equations which leads to many non-evolutionary discontinuities
(intermediate shocks over which more than one family of characteristics converge). These
discontinuities are solutions of the MHD Rankine Hugoniot jump conditions [1] and their phys-
ical relevance has been debated over the last few decades and is still shrouded in controversy
[10, 12, 21, 28]. Initially, all non-evolutionary shocks were rejected as physically irrelevant and
admissible shocks were restricted to regular slow and fast shocks, across which only the slow
and fast family of characteristics converged respectively. Both these shocks are compressive
and across them, the magnetic field can change in magnitude only (the direction remaining
the same). Additionally, the linearly degenerate rotational discontinuity (which changed the
orientation of the magnetic field without changing its magnitude or affecting any of the flow
variables) was believed to be responsible for any kind of rotation of the magnetic field. The
primary argument against the existence of intermediate shocks were their acute sensitivity to
non-planar perturbations in the magnetic field. Such shocks, like the compound waves observed
in [5], exist only for the case when the end states of a Riemann problem are coplanar (having
anti-parallel magnetic fields). These waves provide a mechanism for changing the sign of the
transverse magnetic field. Although they are solutions of the planar MHD Rankine - Hugoniot
jump conditions, they do not satisfy the non-planar jump conditions and thus, they are ex-
pected to degenerate when any non-planar wave impinges on them. Thus they were rejected as
physically irrelevant, since in practical problems, the occurrence of perfectly coplanar conditions
is improbable. )
However, in recent times, such compound waves were observed in numerical computations
starting with Brio and Wu’s shock tube solution [5]. Additionally, an interplanetary interme-
diate shock was detected in the Voyager 1 data (Chao J.K., Lyu L.H., Wu B.H., Lazarus A.J.,
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Chang T.S., Observations of an intermediate shock in interplanetary space, Journal of Geo-
physical Research, Vol. 98, 1993, pp. 17433 - 17450). These observations led to the debate over

the relevance of evolutionary conditions, which were developed for convex, strictly hyperbolic
system, to the MHD system.

Figure 3.2: Admissible Shocks of the MHD Riemann problem [12)

i-+The physical relevance of intermediate shocks was first studied in a series of papers by
C.C. Wu [9, 10}, by modeling the resistive MHD equations and demonstrating the formation,
evolution and stability of intermediate shocks with converging Alfvén characteristics. Across
the intermediate shock the sign of the tangential component of the magnetic field changed
sign. In [10} and earlier works by Wu, it was demonstrated that these shocks could form
due to steepening of continuous waves (such numerical experiments are reproduced in [20})
and thus should be considered physically relevant. The stability of the intermediate shock
has been demonstrated through its interaction with an intermediate wave, carrying a non-
P]anar flux [9]. According to the evolutionary theory, such an interaction should result in the
Immediate degeneration of the intermediate shock, which however did not occur in the numerical
computations. The disintegration of the intermediate shock was found to be contingent on
the boundary conditions and the dissipation present in the system. The initial conditions in
[9] consisted of an intermediate shock with shock-frame velocities sub-fast, super-Alfvénic and
Super-slow upstream and sub-fast, sub-Alfvénic and sub-slow downstream. Thus, the converging
characteristics on the upstream side included the slow and Alfvén families while downstream
of the shock, all families of characteristics converged. Further, the initial condition contained
an‘intermediate wave which caused a rotation in the magnetic field. Since intermediate waves
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and were traveling wave solutions of the associated viscous equations. It is their contention that
without the non-evolutionary discontinuities, the planar/coplanar Riemann problem cannot be
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were found to be the regular slow/fast shocks (with only one family, slow/fast, c.on'vergmg
across the shock), the over-compressive shock (across which all families of char'actenstlcs c?n-
verge) and slow/fast compound waves (shock and rarefaction of the same family propz'igatmg
together). Using these discontinuities and slow/fast rarefaction waves, any planar ?xlemann
could by uniquely solved. For a non-planar problem, the solution is expected to contaTn (apart
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planar discontinuities were found to be slow/fast intermediate shocks across which the Alfvén
characteristics converged, in addition to the slow/fast characteristics. The relationship between
the shock speed and the characteristic speeds are shown in Fig. (3.2) [12). Borrowing the ter
minology in [12, 25, 26}, S1 and S2 are the slow and fast regular shocks while X, 151, 152 and
O are the intermediate shocks. Due to the extreme sensitivity of these intermediate shocks and
compound waves in a non-planar setting, there occurrence is improbable and temporary- Thu.S-
the conclusions from [12, 25, 26] indicate that the large-time solution is expected to contain
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tematic study of the wave structure in MHD was made
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only regular shocks (fast or slow) and broad Alfvén waves to change the direction of the mag-
netic field. The primary significance of these intermediate shocks is to explain the small-time
behavior of the solution. By the viscous admissibility conditions, the existence of rotational
discontinuities was rejected since they did not have corresponding traveling wave solution in a
viscous setting. According to [25}, the non-planar Riemann problem is not self-similar and the
solution depends on the time scales involved. For very small times, the solution is expected to
contain intermediate waves and structures like the compound waves. At intermediate times, the
solution topology keeps changing as the non-evolutionary waves disintegrate into evolutionary
ones. The rate of disintegration depends on the viscosity present in the system. At large times,
only planar, evolutionary shocks are present and intermediate waves are replaced by Alfvén
waves. |

Inspite of these studies by Wu [9, 10] and Myong & Roe [25, 26] on the admissibility of
intermediate waves, there still exists a school of thought who support the evolutionary theory
and refute the existence of intermediate waves. It has been shown in [28] and reference therein,
that the numerical results obtained in [5, 9, 10} and other such studies can be explained on
the basis of the evolutionary theory without subscribing to the admissibility of intermediate
waves. It was claimed in [25] that not all planar Riemann problems can be solved for using just
evolutionary shocks and thus, non-evolutionary shocks are required to ensure the well-posedness
of the solution. It has been subsequently refuted [28} on the grounds that initiat conditions
requiring such intermediate waves form a region of zero volume in the parameter space (thus
reiterating the structural instability of intermediate waves to non-planar perturbation) and are
physically irrelevant. Thus, on these grounds, these waves have been disregarded as acceptable

solutions of the MHD system. Overall, questions regarding MHD wave structure and admissible
discontinuities are yet to be resolved.

3.3 Model Systems

The model systems are simplified systems which retain the wave structure and singularities
of the ideal MHD system. These systems have been used to study the wave structure of the
ideal MHD system in [25, 26]. A rotationally degenerate 2 x 2 system has been presented in
25, 27} which provides a model to study the behavior of Alfvén waves. In [27], this system
has been termed as a prototype of larger systems exhibiting rotational degeneracy, based on
the correspondence between the wave behavior of the 2 x 2 system and the transverse part
of the wave behavior of any rotationally degenerate system of hyperbolic conservation laws.
Magnetohydrodynamics and isotropic elasticity are two such systems where this comparison
applies. The system has a cubic flux function and is given by [25, 27]

u] +|: (u’+v2)u] b

v |, @ +vp |

(36)
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and rarefactions across which the magnitude of the SOlllth[T chz;.n.ges. Otaﬁoi of affs i
problem of non-uniqueness of solution for Riemann problems m\-ro ving a r | debateszr ra :’mS
(see discussions in [27]) which is similar to the problems of non-umquenes;is a;t:lussed - thiesgar ing
the admissibility of non-classical waves in the ideal MHD system (as report
andTlie[zrtla]gr.esentation of the ideal MHD equations using a 3.x 3 mode.I sys.tem is based on. the
i MHD waves around the fluid velocity. The simplified model, deriveq
- i i MHD system (with respect to the fluid
in [25], consists of the right-running waves of the ideal ys
motion) and is given as

u cu? +97 + w?
¢ v | 4 2uv =0 (3.8)
w ], 2uw z

The correspondence between the quantities of this system and the ideal MHD equations can be
expressed as ' . - -
==t = 39

c51+1,u5(-c:)2—1,v=§;,w B, (3.9)

where a = (/yP/p is the speed of sound. The details of the derivation are presented in [25].

The system is non-strictly hyperbolic admitting three waves (Alfvén, fast and slow) and the
eigenvalues are

A = 2u (Alfven)
Ma=(c+1uxt f(c—1)2u? + 4(? + w?) (Fast, Slow)

(3.10)

2.5 3
always satisfying A, < A; < A;. One of the slow/fast wavespeeds vanish when cu? = v* + v

while the triple umbilic occurs at 4 = v = w = 0. The right and left eigenvectors for this system

have been derived in [25] and the normalization required for the singularity at u = v = w = O;i:)
been outlined in [12). For planar Riemann problems, the solutions to this system are expecte

contain two waves (shock/rarefaction/compound wave) of each magnetosonic family (slow/ fast()).f
Since out-of-plane component of the state vector is identically zero (w = 0) for this class
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the solutions of the two systems are expec
previous section, the admissible waves of

results extended to the ideal MHD system [26] t

odel systems have been derived in [25] and the
structure.

0 yield a comprehensive description of the wave

provides a simplified system containing the
right-running MHD waves. In the present study, these simplified Systems are used to study the
behavior of higher order WENQO schemes and the necessity and efficacy of the monotonicity pre-
- Each of these systems (given by egs. (3.6) and
(3.8)) in the conservative formulation as given by eq. (3.1} are numerically solved as described in

, the 3 X 3 model system i
to investigate the efficacy of MP limits for planar waves (shocks/ rarefactions/compound waves).
The initial conditions are obtained from the Riemann ¢

urves and Hugoniot loci presented in [25)
such as to yield permutations of waves of different typ

es and families. Additionally, non-planar
initial conditions are used to study the behavior of the Alfvén mode and verify the conclusions
drawn from the 2 x 2 rotationally degenerate system. Finally, the MP limits are applied to
the ideal MHD equations and their performance assessed for various planar and non-planar
Riemann problems.

3.4 Numerical Formulation

The semi-discrete form of eq. (3.1} can be written as

i 1
% =Res(u;}; Res(w) = _E(Fi+1/2 —Fi_1p2) (3.11)

where i is the cell index and 8z is the cell width. F;_, /2 and Fyy, /5 are the numerical fluxes
evaluated at the left and right interfaces of the ith cell. A characteristic-based scheme is
used where the flux is reconstructed by decoupling along the characteristic directions. The

eigenvalues, the left and right eigenvectors at the interface (A

tr1/2 L1 jp and RE, ), respectively
for k = 1,.

-,m where m is the number of characteristic directions of the system) used for
decoupling, upwinding and re-coupling the fluxes are evaluated at an arithmetically averaged
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state. The flux is evaluated as: .
k
Fip12= Z frapRina a1
k=1
is the component of the flux vector along the kth characteristic direction, Sliges
is the c

where f“, +1/2 e u -
‘ eri eme usi a sten 1 S, charactetlstlc ﬁllx at the interf: tio
num rlcally. For aSCh il ng riac f

those evaluated at cell centers lying in the stencil,

fhap=Reclffs 5 €5) 1y

dependent on the scheme used. In the present study,
the Local Lax-Friedrich (LLF) and the Roe-Fixed (RF) formulations [17, 23] are used to evaluate
the characteristic flux in an upwinded fashion. The behavior of both these formulations has

been studied and it is observed that LLF yields more diffusive results compared to RF. However,

the difference is negligible for fine grids and higher order schemes. The LLF formulation is given

as

where Rec is the reconstruction procedure,

ffn/z =3+ IE 4 aipyp(uh — uf)]

Qiy12 = xmaz(|Af], |>‘§+1/2|1 [R\Y)) (3.14)

where the subscripts L and R indicate a left- and right-biased evaluation of the flux respectively.
The factor x controls the amount of diffusion in the scheme and is typically between 1.0to 1.3
[23]. The RF formulation is given as -

fik+l/2 = f:» if ’\fx /\§+1/2y)\?+1 >0
= fh i A, )‘§+l/2s '\§+1 <0

1
= Elff + & + cippo(ufy — uk)], otherwise (319)

Both these formulations require the evaluation of the left and right biased decoupled fluxes i h
and states uf » at the interface. The RF formulation uses the LLF as an entropy fix to the Ro¢®
scheme by introducing extra dissipation and thus breaking up non-physical expansive e
Using the RF formulation is also computationally cheaper since reconstruction of the -
vector is required only in cases where entropy fix is required. A more complete discussio” 'OH
the comparison between RF and LLF formulations can be found in [23] and references therc%n'
The semi-discrete equation, eq. (3.11), is advanced in time using the Runge-Kutta (BE) fam‘lly
of‘ sc.h('am?ﬂ [17). The 1st order (Forward Euler), 2nd and 3rd order accurate Total e
D.lmmlshm.g (TVD) RK and 4th order RK schemes are used in the present study in conjure
with the high order WENQ spatial discretization

In the present study, computation of .
class of schemes. At the (
using a stencil containing t

tion

WEN
. the decoupled fluxes f + g are done using the ENO/ e
; +.l/ 2)th interface, the left biased decoupled flux f] 1 is Comismg
be ith cell while the right bissed decoupled flux f5 is compute’
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a stencil containing the (i+1)th cell. An r-th order ENO scheme chooses the smoothest stencil
among 7 candidate stencils containing the upwind cell (i or i + 1). The WENO schemes were
introduced as an improvement over the ENO schemes (17, 18, 19] the selective procedure is
replaced by taking a convex combination of all the candidate stencils, with weights dependent
on the smoothness of the stencils. In smooth regions of the solution, these weights approach the
optimum weights which yield a (2r — 1)th order approximation, while near a discontinuity, the
stencils which contain the discontinuity are given near-zero weights. Thus, an 7-th order ENO
scheme can be extended to give a (2r — 1)th order WENO scheme. The left-biased decoupled
flux at the (i + 1/2)th interface, computed using a rth order ENO scheme centered on the ith
cell is

St = FF(FErsguts Flrpjazs oo Flis) where (fF = LY, , F) (3.16)

where

Sj=li—-r+j+1li—-r+5+2,..,i+j) (3.17)

is the locally smoothest stencil (based on the r-th divided difference) among r choices (0 < j <
r — 1).The same flux computed using a (2r — 1)th order WENO scheme centered on the ith
cell, can be formulated as:
P S, k
= _Eow;'fj (e risrrs FErasnas -+ Jiis) (3-18)
3=

Each of the r candidate stencils give an r-th order approximation f¥(f¥ . i\, ¥ 1ii0 - fEy)
and the coefficients for each point in the stencil can be found in [17] for various orders. The
weights w; depend on the smoothness of the stencil and are constructed as:

T T
Qs C].

wj Z where o} = m

e 3.19
7 oft+af+...+af, (319)

C7 are optimum weights which result in a (2r — 1)th order approximation while 7 S} are smooth-
ness indicators. A small number € = 1076 in added to the denominator to prevent division by
zero. The values and expressions for the optimum weights C7 and the smoothness indicators
ISj for various orders r are given in [17, 19, 23}. The corresponding expressions, centered on the
(i + 1)th cell can be used to compute the right-biased decoupled flux f&. A similar procedure

is used to compute the left and right biased decoupled states uf _R» Wherever required.

3.5 Preliminary 1D Results

The schemes developed are applied to two planar Riemann problems as described in [5]. The
first is Brio & Wu’s shock tube which is an extension of the Sod’s shock tube in hydrodynamics,
with anti-parallel magnetic field components on either side of the initial discontinuity. The
solution of this problem consists of a fast rarefaction, a slow shock and a contact discontinuity
moving to the right and a fast rarefaction and a slow compound wave moving to the left.
The second problem solved is the high Mach number problem which involves shocks moving
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eld in this problem is perpendicular to the
equivalent to a hydrodynamic problem with
Although these problems have no physical
olution of 1D MHD and

at approximately Mach 15. Since the magnetic ﬁ
direction of propagation of waves (x-direction), it is

i i the gas pressure.
the full pressure being equivalent to : :
relevance, they have become benchmark problems in the numerical s o
serve as validation cases. The initial conditions for these problems are as follows:

o W Shock Tuba (800 Gid P, 400 T Seps, CFL05)

Brio & W's Shock Tube (800 Grd Points, 400 Tim Sieps, CFL0S)

Tengential Megnetic Fleid (By)

Figure 3.4: Tangential Magnetic Field - case 1

hlw-mrnwummn-a‘mm

Figure 3.3: Density - case 1

nnw-m'rnma‘nm.nm*mm

s — X ¥ T Order Upwind  +
24O ENO
VOUENO «

Figure 3.5: Normal Velocity (Magnified) Figure 3.6: Pressure (Magnified)

Shock Tube (Case 1) : wr=(1,0,0,0,1,0, 1]
wr = [0.125, 0, 0, 0, 1, 0, 0.1]

B, =0.75, y=20

Brio & Wu/'s High Mach No. Problem (800 Grid Points, 400 Time Steps, CFL 0.8)

s &

&

':~

Tangential Magnetic Fleld (8y)

Figure 3.7: Tangential Magnetic Field - case 2 Figure 3.8: Density - case 2

e
“ High Mach No. (Case 2) :

wy =11, 0, 0, 0, 1, 0, 1000],
wr = [0.125, 0, 0, 0, —1, 0, 0.1
B B, =0, y=20 (3:21)

where w = [p, u,v,w, By, B, p} is the vector of primitive variables and the subscripts L and R
indicate the left and right halves of the domain. The domain of computation is taken as z € [0, 1]
with the initial discontinuity at z = 0.5. All computations are done on a grid containing 800
points and & CFL number of 0.8 for 400 time steps. In both the cases, the computed solutions
are validated with those presented in literature.

,Figs. (3.3) and (3.4) show the variation of density and tangential magnetic field respectively
for the shock tube problem for all the schemes. In fig. (3.3), it can be seen from the density
profiles that the resolution of the shocks and the contact discontinuity improves as the order
of the scheme increases, with the 5th order WENO showing very little smearing. Figs. (3.5)
and (3.6) show a magnified view of the compound wave in the solution, which consists of a
shock attached to a rarefaction (this is 2 manifestation of the non-convex flux function). Figs.
(3.7) and (3.8) show the variation of the log of pressure and density for the high Mach number
problem. The Mach number corresponding to the right-moving shock wave is 15.5. Since this
problem reduces to a standard hydrodynamical one with the full pressure being equivalent to
th? gas pressure and the fast magneto-sonic wave being equivalent to the speed of sound, the
analytical solution can be found [5, 20]. Once again, it is observed that the smearing over the
contact discontinuity reduces considerably as higher order schemes are used. In both the cases
considered here, it is seen that the 5th order WENO scheme produces some oscillations near

ﬁhe rarefaction waves as well the contact discontinuities and these issues are addressed in the
next section.




ty Preserving Limits
near discontinuities, the monotonic,

3.6 Monotonici
WENO schemes : .
24] to prevent oscillatory behavior. High order Wy,

purious oscillations, not only ne?ar discontinuities (shock

3 B also near rarefaction waves, in computations for t},,
w " problems, the MP limits have been suggesteq
ideal MHD system [20..2 ). i degrading the accuracy near discontinuities oy
which prevent such spuriots = limits use the local curvature of the solution to determine t},,

i t extrema. These :
Phys_l:ili r::m;nimum bounds within which the reconstructed fluxes should lie to preyer
maxi P limits have been applied to the MHD system in [23] and resyss

i cillations. M i
spurious s he Brio & Wu’s problem which are encouraging. It has been seey

have been presented for t ) e ;
in those studies that the MP limits are effective in alleviating the oscillatory behavior fo;

WENO schemes. This limiting technique have also been applied to a number of one- ang
two-dimensional hydrodynamic problems and its efficacy has been shown for problems like
shock-vortex interactions [23]. The construction of these limits and their use as outlined ip

[23, 24] is given below. o
The measure of the curvature at the ith cell center is given as

d;= fi-Fl - Zf. + fi—l

the performance of the

To improve
were suggested (23

(3.22)

At the interface, the definition of the curvature can be obtained for the curvatures at the cell
centers. A number of possibilities exists which differ in their allowance for an extremum to

grow. The simplest, Jeast restrictive measure is given as

M, = minmod(d;, di+1) (3.23)

A more restrictive definition has been suggested by [24] where the space for the local extremum
to grow is reduced when the ratio between adjacent cell centered curvatures exceed 4 or falls
below 1/4. It is given as

di.{j/z = minm°d(4dl - d{-!-l: 4dl'+l o dt') di) di+l)

The range [1/4,4] has been determined heuristically and it has been shown that the resulting
schemes are not overly dependent on this choice. It has been argued [23] that the spurious
oscillations occurring in ideal MHD can be spread over upto four cell centers and thus the above
curvature measures, which admit extrema spread over more than two cells, may not succeed in

alleviating these. A curvature measure which admits extrema having a larger support base has
been suggested in [23]:

(324)

= minmod(4d: — iy, dies — iy s, diya, dicn, diva) P

Both these curvature measures are used i it i :
better for all classes of probl .m the present study and it is seen that dm)/(? perfor™
problems, especially for problems involving the 3 x 3 model syste™
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The upper and lower limits, within which the reconstructed values are required to lie,
are obtained using the measure of the curvature at the interface (24, 23}. For the left-biased
computations, the Jeft-sided upper limit at the (i + 1/2)th interface is given as

UL

12 = fi+ O(fi = fir) (3-26)

The maximum CFL number that can be used depends on the value of ¢ as 1 /(1+ ¢). In the

present study, ¢ is taken as 2.0, thus restricting the CFL number to below 0.33. The median
at the interface is defined as
Mp _ 1 1
ikt = Ut fua) = 3iin (3.27)

Allowing for a large curvature, the left-sided value of the solution at the interface is given as

1
= fit 3= f)+ S5

(3.28)

It has been commented in [23] that the resulting schemes are not sensitive to the value of the
parameter [ which determines the allowance for an extremum to develop by using a large value
of the curvature. This is verified in the present study and it is seen that the solutions do not
differ by much for # = 0.5, 3 = 2 and 3 = 4. This property alleviates the disadvantage of tuning
an additional parameter while using the schemes. For the curvature measure, dﬁ?n =dg =
dM4, was taken in [24] while d¥b, = di§, = dM1}; has been used in [23). The latter is used in
our computations since it has been seen to be more suited to the ideal MHD system. Based on

these values, the maximum and minimum values within which the reconstructed values should
lie, can be found as

Lmin __ . 3

f1+1/2 = max{min(f;, fir1, ), min(fi, 5%,2,f.ﬁ"§/2)]
,mar __ __ -

I 1/2 = min[max(f;, fi+1, i‘{ﬁz),mu(fhf.-‘i’ipy i{'pci/z)l

(3.29)
(3.30)
The MP value for the left-biased reconstructed flux is obtained as

L.MP

- S L,mi g
| ey _medlan(fiﬁ-l/zv e .I.L'f?f (3.31)

where the median function is given as

median(z,y, z) = z + minmod(y — £,z — z) (3.32)

The MP value for the right-biased reconstructed flux can be obtained similarly. This treatment

is applied to the decoupled fluxes (and the state decoupled states, wherever required) along the
characteristic directions.

3.7 Results - Monotonicity Preserving Limits

'g'hhe numerical scheme outlined above are applied to a number of 1D Riemann problems for
e three systems considered in this study. A systematic study is made of the behavior of
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i . sts applied to the appropriate characterism
g SChemesl: T an(tih:"‘t‘:::;:h:orl‘ﬁgolxl]milstsco;?)uted by using a first order accurag,
ﬁ;(:;elzneichgr?; tw;:a;;,)oo points. For the rotationally deg‘enerate syste(tin, :}:le F;Oblems
Zhosen are same as those used in [27). The 3 x 3 model system is used t(()i sftu );! eE (13 Cafcy of
MP limits over waves of various types (shbck/ra.refatcti&n/ cc;::;:;i)f ;inp lia-nlzltse:n st ::v g ;f; )n
Two non-planar problems are also used to investigate the n . ;
the Riemann problems solved in section (3.5) are solved. Iy
:ﬁ:{oiortxen?;-le:xsﬁiﬁns, which are modifications of the Brio & Wu'’s shock tube
problem are solved to study the behavior of the Alfvén mode.
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3.7.1° 2 x 2 Rotationally Degenerate System

The numerical examples solved here are drawn from [27} where a class of Riemann problems

have been solved using a Godunov-type method and the Random Choice Method. The initial
conditions are given by (0 < z < 1):

{u,v}(z,t =0) = {1,0} if z<0.05

{rcosf, rsin} if z > 0.05 (3.33)
Casel: r=025 60=m/4

: Case2: r=0.75 0=7n

(3}

Computations are carried out on a grid of 200 points using three different orders of WENO

scheme (5th, 7th and 9th) with and without MP limits and the solutions are compared with the
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3
exact solution. Figure (3.9) shows the variations of u and v for cases 1 and 2 using 9th order
WENO scheme on a 200-point grid. The solution of case 1 consists of a slow rotational disconti-
nuity across with the vector [u v]” rotates by /4 radians without a change in magnitude and a
fast shock across which the magnitude changes (decreases) without any rotation. The solution
of case 2 consists of a compound wave of the slow family (shock attached to a rarefaction) This
is one of the two admissible solutions for this particular initial condition, the other being a slow
7 radians rotational discontinuity and a fast shock (see [27] for a complete discussion on issues
of non-uniqueness). It can be seen from the figure that oscillations are absent for orders as high
as 9th order WENO and the solutions computed with and without MP limits coincide. Thus, it
can be inferred from these observations that rotationally degenerate systems do not encounter
problems of spurious oscillations when higher order spatial reconstruction is applied to them.
Since this system is representative of the Alfvén wave-mode in ideal MHD, these observations
indicate that the MP limiting treatment may not be required for the Alfvén mode on the ideal
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M},ID system and this is verified using non-planar Riemann problems in the next two sections.

3.7.2 3 x 3 Model System

Based on the observations from the 2 x 2 rotationally degenerate system, the 3 x 3 non-planar
system is solved with MP limits applied to two of the three characteristic fields (slow and
fﬂS?XInitially, five planar Riemann problems are solved, with the aim to study the behavior of
MP limits across different classes of waves (shocks, rarefactions and compound waves). These
Problems contain two waves - one each of the slow and fast families. The initial conditions for
these problems are obtained from the Riemann curves and Hugoniot loci for the model system
(Fig. (7} in [25]) to yield different combinations of shocks, rarefactions and compound waves.
The initial conditions for these problems are given by (0 <z < 1)

{v,v,w}(z,t =0)= {u,v,w},ifx<05
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{u,v,w}r if x> 05 (3.34)

SIR2: {u,v,w}.= {1,1,0}, {u,v,W}r = {15,3,0}
S182: {u,v,wh = {1,1,0}, {u,v,w}r = {-1,1,0}
RIR2: {u,v,w}L= {1,1,0}, {u,v,w}r = {1.5,0.5,0}
C1R2: {u,v,w}L= {0,2,0}, {u,v,w}r = {15,1,0}
s102: {u,v,w} = {0,2,0}, {u,v,w}r = {-1,-3,0}

(C1 — Slow Compound Wave, 2 — Fast Compound Wave)
(S1 — Slow Shock, 52 — Fast Shock) ‘
(R1 — Slow Rarefaction, R2 — Fast Rarefaction)

Computations are performed with ¢ = 3 and a CFL number of 0.2 (the MP limits restrict the
CFL to less than 0.33 for ¢ = 2.0). Figure (3.10) shows the variation of u for S1R2 using 7th
order WENO on a 100-point grid while figure (3.11) shows the variation of u for S1C2 using
9th order WENO on a 200-point grid. In both these cases, it is seen from the magnified views
that the oscillations occur in the region between the two waves (the slow shock and the fast
rarefaction in the former; the slow shock and the fast compound wave in the latter) and the
MP limits are quite effective in damping these oscillations. The same conclusions can be drawn
from observing S1S2 as shown in figure (3.12) which shows the variation of u for 9th order
WENO on a 100-point grid. Figure (3.13) shows the variation of u for R1IR2 for 7th order
WENO on a 100-point grid. Oscillations are negligible in this case and are damped out with
MP limits. For C1R2, shown in figure (3.14), there are small oscillations which are damped
out with the MP limits. However, there is a deviation at the foot of the rarefaction which
the MP limits are unable to remove. The deviation has a large support base and thus, it is
perhaps misinterpreted by the MP limiting technique as a genuine extremum. Overall, it can
be concluded from these results that the the magnetosonic modes are susceptible to spurious
oscillations when subjected to higher-order schemes which can be improved upon by the MP
limits.

As a verification of the conclusion that the Alfvén mode does not require MP-limits, two
non-planar modifications of the previous problems are considered. Since the previous problems
are planar with w = 0 throughout the domain, the Alfvén mode is absent. The modification
involved a 45° and 90° twist to the vector [v w]” in the initial conditions for the right half of the
domain (the vector [v w]” corresponds to the transverse magnetic field [B, B.]” in ideal MHD).
In addition to the waves seen in the previous set of problems, these non-planar problems yield
a rotational discontinuity across which v and w change while u remains constant. The initial
conditions for the two non-planar problems considered here are given as:

S1AR2: {u,v,w}, = {1,1,0}, {u,v,w}r = {1.5,2.12,2.12}
S1AS2: {u,v,w}L = {1,1,0}, {u,v,w}r = {-1,0, 1}
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where A denotes a rotational discontinuity. Computations are performed for the same CFL
aumber as before. The problems are solved with MP limits on the magnetosonic modes only
and on all modes and the results compared. Figure (3.15) shows the variations of u and v for
S1AR2. The initial conditions are a modification of the S1R2 case considered earlier involving
o 45° rotation of [v |7 across the initial discontinuity. Apart from the slow shock and the fast
rarefaction, there is a rotational discontinuity which is visible in the variation of v. The figure
shows the computations for 9th order WENO scheme on a 100-point grid. The magnified view
shows the variation of v between the fast rarefaction and the rotational discontinuity. It can
be seen from the figure that there is a good agreement between the solution computed with
MP limits on the magnetosonic modes and that computed with MP limits on all modes. The
same conclusion can be drawn from S1AS?2 as shown in figure (3.16). The initial conditions are
a modification of the S1S2 case involving a 90° rotation of [v w]T. The variation of v and w
is shown for 9th order WENO scheme on a 100-point grid and the solution consists of a slow
shock, a rotational discontinuity and a fast shock. The magnified view shows the variation of
w between the fast shock and the rotational discontinuity. It is seen from both these examples
that the solutions obtained using MP limits on all modes does not differ significantly with
those not using MP limits on the Alfvén mode. Thus, in addition to the observations from

the rotationally degenerate system in the previous section, it is confirmed here that the Alfvén
mode does not require any limiting treatment.

9.7.8 1D Ideal MHD

The 1D MHD system comprises of seven characteristic directions, two each of slow, Alfvén and
fast modes (left and right running), and an entropy wave. The results from the model systems
indicate that the Alfvén mode does not require the MP limiting techniques, while the slow and
fast magnetosonic modes require them to damp out spurious oscillations. The entropy wave
has no equivalent in the model systems and thus, the necessity of MP limits on this mode is
assessed on the MHD system itself. It is seen that the entropy mode causes some oscillations
and thus, MP limits are also used on this mode.

The two planar Riemann problems solved in section (3.5), given by egs. (3.20) and (3.21),
are solved using high order WENO schemes with and without MP limits on the magnetosonic
and entropy modes. Computations are done with a CFL number of 0.3. Figure (3.17) shows
the density variation of the Brio & Wu’s shock tube on 400 grid points using 9th order WENO
scheme with and without MP limits applied to the magnetosonic and entropy fields. It can be
seen that without the MP limits, there is a considerable amount of oscillations downstream of
the left-moving slow compound wave. These oscillations are effectively damped out using the
MP limits and this can be seen more clearly in the magnified view. Similarly, figure (3.18) shows
the density variation for the High Mach No. problem using 9th order WENO on a 200-point
grid. In both the cases, it can be seen that the MP limits are very effective in damping out
the oscillations, though it may increase the diffusion in the solution (see the magnified views of
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Figure 3.17: Brio & Wu'’s Shock Tube Figure 3.18: High Mach No. problem

High Mach no. problem).

To study the behavior of the Alfvén mode, two non-planar modifications of the Brio & Wu'’s
shock tube problems are considered. These problems are similar to the problems studied in [21]
where issues regarding pseudo-convergence for a certain class of problems has been discussed
(see next section). The initial conditions are given as:

Non — Planar : wr,=[1,0,0,0,1,0, 1]
wg = [0.125, 0, 0, 0, cosf, sind, 0.1]

B, =075, y=2 (3.35)

To avoid the pseudo-convergence issues as discussed in the next section, the angles of rotation
of the transverse magnetic fields are taken as 6 = 0.5 and = 1.0 radians, away from the
controversial region around 6 = 7 radians. Apart from the waves seen in planar problems, the
solutions to these problems contain a rotational discontinuity across which only the transverse
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: Figure 3.19: Non-Planar (8 = 0.5 radians)

magnetic field changes. Figure (3.19) shows the variation of By for § = 0.5 radians while
the magnified view shows the variation of density in the region between the left-running slow
rarefaction and the right-running contact discontinuity. Figure (3.20) shows B, for 6§ = 1.0
radian and the magnified view of the region ahead of the left-running rotational discontinuity.
While the oscillations occurring are damped effectively by the MP limits, there is a good
agreement between the solution obtained by using MP limits on all modes and that obtained
by using the limits on the magnetosonic and entropy modes.

* Thus, the conclusions drawn from the 3 x 3 model system are seen to extend to the ideal
MHD system. Table (3.1 compares the CPU time required for solutions involving MP limits
on al characteristic fields and those involving MP limits of the magnetosonic and entropy
fields with those not using MP limits. The computations are carried out on an SGI Altix 350
machine (1.5 GHz, Titanium twin-processor, compiled using -O3). While the usage of the MP
limits entails a considerable increase in the computational cost, it can be seen that there is a
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with selective use of MP limits and this decreq,

i i tational cost : )
substantial decrease in the computa! il aiiaionil Gl by -

is amplified for finer grids. It is expected that
for multi-dimensional problems.

Cases 5A | 58 | 5N | T-A 7S | 7-N [ 9-A | 98 9-N
Case 1
400 Points | 1449 | 1005 | 387 1652 | 1068 | 412 1702 | 1162 | 479
800 Points | 6864 | 4497 | 1447 | 7416 4680 | 1692 | 7787 | 5008 | 2063
Case 2
200 Points | 314 | 238 | 77 | 324 | 252 | 91 352 | 274 | 131
400 Points | 1345 | 1014 | 326 | 1399 | 1061 | 398 1517 | 1150 | 577

Table 3.1: 1D MHD: CPU time (seconds) comparisons - MP limits applied to selected modes vs. al]
modes (5,7,9 - Order of WENO scheme; A - All modes, S - Selected modes, N - No MP Limits)

3.8 Non - Uniform Convergence

Due to the controversies persisting regarding the wave structure in ideal MHD (discussed in
section 3.2), a class of Riemann problems have been defined as non-unique with two possible
solutions. This category consists of problems with co-planar end states and can have two
solutions depending on the admissibility of intermediate waves and rotational discontinuities.
Borrowing the terminology from [21, 22], the problem has an r-solution which contains regular
waves (slow and fast shocks/rarefactions) and also a c-solution, which contains intermediate
waves (like compound waves). In the r-solution, a sign change in the transverse component
of the magnetic field is achieved by the rotational discontinuity. Figure (3.21) [21] illustrates
with an example of a coplanar Riemann problem, similar to the Brio & Wu’s shock tube
[5], but with the initial data varying slightly. The r-solution consists of a fast rarefaction, a
rotational discontinuity and slow shock propagating to the left and fast rarefaction, a slow
shock and a contact discontinuity propagating to the right. The rotational discontinuity does
not show up on the density plot since it only changes the orientation of (flips the sign of)} the
transverse magnetic field. The c-solution is similar to the r-solution except that the rotational
discontinuity and the slow shock propagating to the left are replaced by a slow compound wave.
This is the solution that has been obtained through all numerical schemes in literature. The
only exceptions are methods which use the exact solution of the Riemann problem (eg: the
Random Choice Method, see references in [11]) and these yield the r-solution.

For non-coplanar initial conditions, the MHD Riemann problem is unique and has a regular
solution consisting of evolutionary waves. The compound wave satisfies the Rankine-Hugoniot
jump conditions for only the coplanar case and does not exist for other angles of rotation. How-
ever it is seen that that for near-coplanar initial conditions, a sort of non-uniform convergence
occurs. This behavior was studied in [21] for a range of second order schemes and for higher
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L0y
order WENO schemes in [22]. For initial conditions that are slightly non-planar, it is seen that
for low grid resolutions, the structure contains a compound-wave-like structure which causes va
rotation in the magnetic field. However, this solution is incorrect since this kind of disconti-
nuity violates the jump conditions. This behavior is studied in the 1D algorithms developed
and similar behavior is observed for spatial orders going up to 7th order (ENO reconstruction).
As the grid is progressively refined, the solution approaches the r-solution which is the correct
solution by evolutionary arguments.

¢For the present investigation, non-planar modifications of the Brio & Wu’s shock tube
problem, as mentioned in the previous section, are used, but with different rotation angles.
The initial conditions are given by eq. (3.35). For 6 =  radians, this reduces to the coplanar
Brio & Wu’s problem. To study the non-uniform convergence behavior, a slightly non-planar
orientation is chosen with § = 3.0 radians. Figure (3.22) and (3.23) show the density and
magnetic field variations for computations using 800 and 20,000 points. All computations
are performed using 5th order WENO reconstruction and 3rd order TVD time-stepping. The
Qualitative differences in the solution for 0.3 < z (Length) < 0.5 are obvious. While in the
Computations with 800 points, there is a slow compound-wave-like structure, the solutions for
20,000 points show a rotational discontinuity and a slow shock. It should be noted that even at
20,000 grid points, the resolution of the rotational discontinuity is imperfect. Thus, even slight
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dissipation is enough to destroy its structure, which is why it was disquali y Myong apq
Roe’s viscosity admissibility criteria-
Figue:(824) Sh?ws the br:g(l)dn f;l;.oix:h:hj):;om refined, the magnetic field variatiq,
refined from 800 points t:. 20;1 di;;ontin“iw while the density variation approaches that of ,
gt t'hat i ? ml:’a 11(:innot change across the rotational discontinuity, bu.t even at .20’000
slo?v sh(?Ck (1dealiy’ tus :t:y). Figure (3.25) shows the solutions at diﬁerfant grid r%OIut}Ons o
lt)t?;n : ’_‘; ﬂ;fat::. e: rafiial curve represents & slow/fast shock f)r rafefaxftlon v:i.re C}Z.zlgllng the
magn;tud‘; of the transverse magnetic field without changing its direction, while a circular arc

depicts a rotational discontinuity, changing only the direction of the transverse field, without

changing its magnitude. It can be seen that as the grid resolution is refined, the compound.

wave-like structure breaks up and approaches a rotational discontinuity and a slow shock.

Although the coarse grid solution is an incorrect solution of the ideal MHD equations, it

can be explained by the theories developed by Wu [10] and Myong & Roe [12] by c?nsidering
the fact that the numerical schemes do not solve the ideal MHD equations but a modified set of
equations, where the dissipation present in the system is & non-quantifiable amount, dependent
on the scheme used. It was observed in [22] that use of higher order schemes with very low
dissipations alleviated this problem slightly. Accounting for the numerical dissipation, it can
be explained that the compound-wave-like structures are the intermediate waves studied by
W, which are stable for slightly non-planar data and disintegrate as non-planarity increases or
viscosity decreases. Additionally, using a time scale transformation as described in [22], the zero
viscosity solution can be interpreted as the large time solution of the Riemann problem. Thus,
using Myong & Roe’s [25] description of non-linear evolution of waves and loss of self-similarity
of the solution, the coarse grid solution can be said to represent the short time scales where
the viscosity has not yet begun to act. Thus, intermediate waves are present in the solution.
However, at large times (finer grids) these disintegrate into regular shocks and rarefactions as
predicted in [25, 26]. Thus, considering the associated viscous equations, the theory developed
in [9, 10, 25, 26] can be connected to the numerical results presented in this section and/the
problem of non-uniform convergence. 3

However, the fact still remains that these solutions, though explicable in the resistive MHD
setting, are incorrect for the equations of ideal MHD, and therefore, one must aim to construct
numerical schemes which will hasten the disintegration of the extraneous waves. Use of very
high order schemes failed to resolve this problem [22] and helped only to bring down the
threshold value of mesh refinement for which the solution approached the evolutionary one.
Another method, suggested in literature, is adaptive mesh refinement around regions where the
magnetic field undergoes a near-m rotation and where such waves are likely to occur.

und-wave-like structure as the grid i
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Chapter 4
2D MHD - Numerical Implementation

Thé 2D equations of ideal MHD are obtained from the ideal MHD system, eq. (2.32), by
considering gradients to exist only in the z and y directions. They can be expressed in the
conservative form as [7):

Ou
at VF=0 (4.1)

whete the flux is 7 = fi+ g}, u=[p pu pv pw B, B, B, EJ and

" fais pu?+ P* — B? pw+ —B,B,
(a) By (b) Density - puv — BB, pv? + P — BZ
o puw — B,B, pvw— B,B,
0 vB; —uB,
uB, —vB, Q
uB, —wB, vB, —wB,
Rotation by 3 radians - Pseudo Convergence (5th Order WENO) [ (E+ P*)u— B,(uB) | | (E+P*)—B,(uB) |
As with the 1D system, the above equations are non-strictly hyperbolic and have non-convex
flux functions. Additionally, while solving these equations numerically, it is imperative to
ensure the solenoidal nature of the computed magnetic field. In 1D, this condition reduced to
B, = constant and is satisfied by leaving out B, from the evolution equations are treating it
as zlg parameter. However, the treatment is more complicated in 2D and 3D. The magnetic field
is ;&quired to satisfy:

Figure 3.24: Break-up of the compound wave - density and By

b VB=0= f BidS=0= 3 BAsS=0 43)

faces

A number of methods have been developed to enforce this condition in numerical computations
as discussed in section (2.5). In the present study, the 8-wave formulation developed in [3, 29}
is used.

41 The 8-wave Formulation

The 8-wave formulation is derived from adding a source term proportional to the divergence

‘ . of B to the governing equation (4.1). The modified equation can be derived from the basic

Figure 3.25: Variation of Solution with grid resolution (Bz - By plane) equations of magnetohydrodynamics by not enforcing the condition that the dlvel.'gence of Bis
2ero and retaining terms containing V.B = 0 [3]. The aim is to obtain 2 symmetrizable form of
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the MH 2 <52 which is non-physical in nature, Th

D equations. Eq. 4.1) admits a zero elgenvalue ; : .
. i waaveoformMatifm x)eplaces this eigenvalue with uy, (the fluid velocity norma] t the
modified 8-

face) and thus all eigenvalues are symmetric about the fruid velocity: The modified §ovening
ace) and thus

P ws:
equation is as follo %l:_ . : 3 »
where S = —(V.B)[0 B u u.BJ]". The effect of the sourc.e term 01.1 th.e divergence of B —
be seen by taking the divergence of all terms of the induction equ‘at'lc'm in eq.. §2.12). W‘thOUt
the source term, this results in the constraint V.B = 0. If the initial cond.t?xons satisfy thig
condition, the computed solution should ideally satisfy it, assuming no errors in computations.
However with the source term included, one obtains

% 4 9.(pug) =0 TN (45)

where ¢ = V.B/p. This describes the equation of the quantity ¢ which is being passively
convected with the fluid. For the solution, ¢ is constant for all streaklines and since the initial
and boundary conditions satisfy the zero divergence condition, the solution should also have zero
divergence. Another way to interpret the effect of adding a source term is to observe that due to
the convection equation, any finite value that the divergence of B may develop as the solution
progresses will get convected away. However, it should be noted that the modified equations
are no longer strictly conservative in nature. Ideally, when the divergence is zero, the modified
and original equations are identical and thus, conservative. In numerical computations, the
divergepce will never be strictly zero and will have some value of the order of round-off errors.

This will lead to slight errors in meeting shock jump conditions. It is expected that the effect
on the solution will be negligible.

42 The 2D MHD Eigenstructure ‘ o ” x

The 8-wave formulation admits eight eigenvalues. For an arbitrary face with normal ﬁ,”ﬁle
eigenvalues are as follows: . ‘

e ). = u, - entropy wave
® \g =uy, - “divergence” wave
® A; =y ¢, - left and right running slow waves
® Aa =ty £ ¢, - left and right running Alfvén waves
® Ay =1y, £ s - left and right running fast waves
where tizé wav_eépeeds are given by . :
= % =B./\p C @)
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,':rhe reconstruction of the flux is done via a characteristic decoupling an!
. section (3.4) is extended to multi-dimensions.

177+BB
Ga=gh——1 (BB, 4pB;
P P) 7 @7

125 s p
and the Subnccipé i dfinoted Quantities normal to the interface. The eigenvectors for thi
modified system, as derived from the primitjve variables ( ¢ ors or tis

W= T
derived in 3] for the special case of the interface being no lpuvwB, By B, pJT), have been

. rmal to the z-axis. In th,
the eigenvectors, in terms of the conserved variables, are derived by e present study,

the eigenvectors in primitive form by the Jacobians of transformation relating conserved and
prmﬁtive variables. Additionally, using the rotation matrices for transformation of the velocity '
and magnetic fields from Cartesian coordinates to face-normal and tangential coordinates tz :
vicé versa, the eigenvectors are derived for an arbitrary face. - an 3

il

4.3 ¥ Numerical Scheme

The gpverning equation, discretized in space is given as:
f dllﬁ du;: '
—Vi; dS = S..V.. L [ A Seslialy
3 2 Vi +!E F.4dS = SyV;; = e Res(i, j) (4.8% |

o
wh_égg the ‘residual is given by (for a quadrilateral cell)

g o 4 T
i ‘ Res(i,j) = 7[Z F.0,dS; +s;; Y B.ydS)) (49) °
: ij =1 =1 ' e

wlfg‘ie s =[0 B u u.B]”. The semi-discrete equation, as given by eq. (4.8)is marched m tlme
usifng the multi-stage Runge-Kutta (RK) algorithm. The 1st order, 2nd and 3rd orderTVD
RK-and 4th order RK time stepping are implemented and used in the present study. 'F(I)l' the
cbl:'nput.ation of the divergence term, the term s;; is computed using the values at the cell center.
The magnetic flux through the faces (B.1;dS;) are computed by taking the arithmetic average

Of’;tlie magnetic field at the cells on either side of the interface.

+/Currently, a high-resolution solver using ENO/WENO reconstruction based on the Roe’s

scheme is been implemented to compute the flux at the interface. A similar effort has been

ﬁl’?'de in [3} which uses a weighted least-squares based reconstruction. The basic Roe’s scheme

i*?‘;'Eiven by
s::ix,‘f .
l F(ug,up) = %[(F.ﬁ(uL)+F-ﬁ(ua)) = 3 In(un — u)MiRy] (4.10)
kT

To prevent the formation of expansion shocks, the Harten’s entropy fix in the form used in [3}
Is implemented. It is observed that without this entropy fix, the solution computed is grossly

ive €l after a few iterations.
negative pressures are encoun
and for many problems, g tered .
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4.4 Results and Discussion

In the present study, the algorithm is validated for test cases whi(.:h hfwe become benchmg,)
problems for 2D MHD on Cartesian meshes. Through these validation cases, a number
boundary conditions (outgoing, solid, periodic, specified free-stream) are developed. Repye.
sentative results reported here include the Orszag-Tang vortex problem (7, 20, '32, 33], the
cloud-shock interaction [32] and the fast rotor problem [34, 32, 33]. Unless mentioned othe;.
wise, the domain in all problems as been taken to be a square of unit length. Aside for th
problems reported here, the algorithm has also been tested on some hydrodynamic problems
since in the absence of a magnetic field, the MHD equations reduce to the Euler’s equations,
These test cases include the 2D Riemann problems as well as the oblique shock reflection prob-
lem. The initial conditions are specified in the following subsections in terms of the primitive
variable vector W = [p, u, v, w, B, By, B, T

4.4.1 Orszag-Tang Vortez Problem

The evolution of the Orszag-Tang vortex system is considered in this problem. It was pro-
posed as a simple model to study significant features of supersonic MHD turbulence and tests
the algorithm’s robustness at handling the formation of shocks and multiple shock-shock in-
teractions. The initial data consists of a superimposition of sinusoidal velocity and magnetic
fields and the flow quickly transforms to a very complex structure with multiple interacting
shocks. This test problem has become a benchmark for 2D algorithms and has been solved for
in (7, 20, 32, 33] with slightly varying initial conditions (which are all topologically similar). In
the,preevs‘eﬁt study, the initial conditions are as follows:

@Im

[Prame o0y [ 16 Movz00s [ 1]

0.460824

Figure 4.1: Orszag-Tang Vortex Problem - 1st Order Upwind and 5th Order WENO

n,jFigure 4.2: Orszag-Tang Vortex Problem - FLASH results and Deane & Lee’s results [7]

sy Wenita = [L.0, —sin(2my), sin(2nz), 0, ~sin(2my)/v, sin(drz)fy, 0, Yol . (411)

wit‘ﬁ!‘y = 1.67. The boundary conditions are all periodic. The solution at time t=05i
computed using a 200 x 200 grid. The computations were done using 1st order Roe (with ist

ord'é; time stepping), 2nd & 3rd order ENO (with 2nd order TVD RK time stepping) and 5th
order WENO (with 3rd order TVD RK time stepping). Figure (4.1) shows the density contours

obf’gﬁned by using the 1st order upwind and 5th order WENO reconstructions. As is expected, .

thé",;rmolution of the solution increases as the spatial order is increased. However, the higher-"
order reconstructions also exhibit slight oscillations which are more pronounced on a coarser
meg;h and/or higher CFL than what can be seen here. Figure (4.2) shows the results presented
in (7] which were obtained using the a staggered mesh, dimensionally-split algorithm and by
using the FLASH code, developed and maintained by the Alliance Center for Astrophysical
Thgrmonuclear Flashes at the University of Chicago (http://flash.uchicago.edu). Both these

l’esults were obtained using a 200 x 200 grid. A good agreement is seen with the between our
nglts and those in [7}

4f2 Rotor Problem

Thé‘ evolution of a dense, rotating fluid in an ambient, stationary fluid of lesser density is studied
in'this problem [34, 32, 33}. The initial conditions are identical to those specified in [32} as
“Rotor problem 1”. There is a disk of dense rotating fluid with p =10, u = —vg(y—0.5)/ro and
VS (g = 0.5)/ro with a radius ro = 0.1 and v = 2. The ambient fluid is at rest with p=1
forr> = 0115 (r= mﬁ)_?) For the fluid in between (ro < 7 < 1), linear

density and angular speed profiles are provided with p =1 +9f, u = ~fwly ~05)r, v.=
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Figure 4.3: Rotor Problem (Pressure) - 3rd Order ENO and Toth’s solution [32]

fuo(z — 0.5)/r where f = (ry —r)/(r1 — 7). An uniform pressure and magnetic field exist
throughout the domain (p = 1, B; = 5/+/4m) with y = 1.67. Out-of-plane components of
velocity and magnetic fields are zero. All boundaries were outgoing. The solution is obtained
for a time level of 0.15. Figure (4.3) shows the pressure contours obtained using a 3rd order
ENO scheme with 2nd order time stepping on a 100 x 100 grid and that obtained in [32] using
-a constrained transport/central difference based scheme on a 400 x 400 grid. The computed
result show a good agreement with the results in [32]. The same problem, solved in [34, 33] has
slightly different initial conditions. The results are qualitatively similar.

4.4.8 Cloud Shock Interaction ‘ F;,,ﬂ.‘ 1

This problem studies the interaction of a high density cloud,. moving at supersonic speeds
(approximately 8.7 Mach), and a stationary shock [32]. The initial conditions consist of a
stationary discontinuity which is a fast shock combined with a rotational discontinuity in B..
The left and right states are given by:

W =[3870000218 —2.18 167.35], Wr=[1 —11.250 0 0 0.56 0.56 1] (4.12)

with v = 1.67. The discontinuity lies at z = 0.6. Superimposed on these initial conditions is a
high density circular cloud with p = 10, p = 1.0 centered at z = 0.8, y = 0.5 with a radius 0.15,
moving leftwards at the same velocity as the ambient gas. The right boundary is a supersonic
inflow boundary with the conditions specified as Wx, while all other boundaries are outgoing.
Figure (4.4) shows the density contours and magnetic field lines obtained from a 2nd order ENO
scheme on a 200 x 200 grid. The computed results are compared with those obtained by [32)-
Figure (4.5) shows the results obtained in [32] using a constrained transport/central difference
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Chapter 5
Conclusions

t study, indi i
x:;;rf:; validastted on benchmark problems in 1D ideal MHD. The results indicate that while

the higher order non-oscillatory schemes show considerably be'tter res?luti.on co;lpzzd to th‘e
1st érdé; scheme for the MHD equations, they exhibit some e OSCIH":“OHSMI:D s this
issue, a comprehensive study is made of the characteristic behavior of thevldeal equations,
whe;J. solved using higher order WENO schemes. While oscillatory behavior by WEI.‘IO S.Ch“fn.les
has é.lso been reported in literature, a solution-dependent monotonicity—presewg limiting
tecl;niqllle has been proposed to alleviate this problem. The efficacy and the necessity of these
MP limits is studied for the characteristic fields of ideal MHD. The 2 x 2 rotationally degenerate
syst‘,e‘afn, éugg%ted as a prototype for the Alfvén mode, is solved with higher order WENO
schemes and it is seen that no oscillations occur at such high orders, across all types of waves.
Thi‘s mdxcat% that the MP limits are not necessary on the Alfvén mode in the ideal MHD
equatic;i;s ‘because of the mathematical similarities between the rotationally degenerate system
and the Alfvén waves. Subsequently, the 3 x 3 model system, which is representative of the ideal
MHD equations by modeling the right-running waves, is solved using the higher order WENO
schemes. Planar cases are solved to study the behavior of the slow and fast magnetosonic modes
and these modes are seen to be susceptible to spurious oscillations. The MP limits are applied
which alleviate these oscillations with varying degrees of success. The observation from the
rotationally degenerate system (that the Alfvén mode does not need the limiting procedures)
is verified using non-planar modifications of the planar problems so as to yield an additional
wave of the Alfvén family. It is seen that solutions computed with and without the MP limits
on the the Alfvén mode coincide, thus reiterating the previous observation. These conclusions
are extended to the ideal MHD system and a characteristic-based algorithm is developed using
higher order ENO/WENO schemes with the limiting procedure applied on the magnetosonic
and entropy modes. Two benchmark problems are solved and it is seen that the limiting
procedure is extremely effective in removing the spurious oscillations. Non-planar modifications
of the Brio & Wu’s shock tube problem are solved and it is verified that the conclusions about
the Alfvén mode extends to the ideal MHD equations. The selective use of MP limits has
resulted in a significant saving in the computational cost for the 1D problems studied here and
it is expected that this will be further amplified for multi-dimensional problems.

Another thrust of the present study is to understand the wave nature of ideal MHD which
has been investigated extensively in literature. Ins

pite of a lot of efforts in this area in the past
couple of decades,

discrepancies still persist in the various conclusions arrived at by various
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\
o characteristic-based algorithm is constructed using ENO/WENO class of

ssearchers and the question of shock admissibility hag still not b
‘rdeal MHD to practical problems has also come under doubt. T
i
the issues of pseudo-convergence seen for all Godunov-type methods while computing solutions
for 8 class of slightly-non-planar initial conditions. Th

. . i € problems regarding psuedo-convergence
4 gtudied using the algorithm developed in the Present study.

Gimultaneously, a high-resolution solver using the ENO/ WENO reconstruction based on
the Roe scheme is implemented for the 2D equations. The solution and flux are reconstructed
via characteristic decoupling. The 2nd & 3rd order ENO and 5th o

' rder WENO spatial recon-
struction and 2nd & 3rd order TVD Runge-Kutta and 4th order Runge-Kutta time-stepping *

ure implemented, apart from the basic 1st order scheme. The code is validated for a number
of benchmark problems involving cartesian grids. It is seen that though the solutions ébtained

show good agreement with those in literature, spurious oscillations occur which lmit the'use
of higher order schemes. Thus,

een resolved. The relevance of
hese issues are connected with

one natural direction of future work is the extension of the MP
Jimits to the 2D algorithm. However, a significant drawback in this would be the tremendous
increase in the computational costs, even with a refined use, as proposed in this report. An
estimate of this increase can be obtained by extrapolating the CPU times tabulated for 1D "'
problems in this report. Presently, the algorithm has been for problems on Cartesian’' meshes
only and thus needs to be extended to non-Cartesian meshes to solve truly multi-dimensional’"
problems. Once the code is validated on body-fitted grids and its performance evaluated for

all kinds of boundary conditions, it can be used to carry out blunt body computations, whose’
results are likely to be of relevance to studyin

i g flow past bodies at hypersonic velocities.
e 5

vy
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