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COMPACT RECONSTRUCTION SCHEMES WITH WEIGHTED ENO
LIMITING FOR HYPERBOLIC CONSERVATION LAWS∗

DEBOJYOTI GHOSH† AND JAMES D. BAEDER‡

Abstract. The simulation of turbulent compressible flows requires an algorithm with high ac-
curacy and spectral resolution to capture different length scales, as well as nonoscillatory behavior
across discontinuities like shock waves. Compact schemes have the desired resolution properties and
thus, coupled with a nonoscillatory limiter, are ideal candidates for the numerical solution of such
flows. A class of compact-reconstruction weighted essentially non-oscillatory CRWENO schemes
is presented in this paper where lower order compact stencils are identified at each interface and
combined using the WENO weights. This yields a higher order compact scheme for smooth solu-
tions with superior resolution and lower truncation errors, compared to the WENO schemes. Across
discontinuities, the scheme reduces to a lower order nonoscillatory compact scheme by excluding
stencils containing the discontinuity. The schemes are analyzed for scalar conservation laws in terms
of accuracy, convergence, and computational expense, and extended to the Euler equations of fluid
dynamics. The scalar reconstruction is applied to the conserved and characteristic variables. Nu-
merical test cases are presented that show the benefits of these schemes over the traditional WENO
schemes.
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1. Introduction. The solution of hyperbolic partial differential equations (PDEs)
admits discontinuities, and thus numerical schemes require some form of limiting to
be high order accurate for smooth solutions and nonoscillatory for discontinuous solu-
tions [1, 2]. The essentially non-oscillatory (ENO) schemes were presented [3, 4, 5, 6]
where the smoothest stencil is chosen amongst candidate stencils of the desired order
for reconstruction at an interface. The ENO schemes were extended to the weighted
essentially non-oscillatory (WENO) schemes [7, 8, 6] with no additional computa-
tional expense. A weighted combination of the candidate stencils is used to achieve
a higher order of accuracy for smooth solutions, with the weights being a function of
the smoothness of the corresponding stencils. Very high order WENO schemes have
been constructed [9]. While arbitrarily high order accurate WENO schemes can be
constructed, they suffer from poor spectral resolution and increasingly wide stencils.

Compact schemes were introduced [10] which achieve high orders of accuracy with
smaller stencils by using implicit interpolations for the derivative of the function. The
schemes were shown to have better bandwidth resolution and lower truncation errors
for the same order of convergence. These schemes have been applied to the simulation
of incompressible [11, 12] and compressible [13, 14] flows as well as to computational
aeroacoustics [14, 15] and electromagnetics [16]. The improved resolution of compact
schemes has resulted in their application to direct numerical simulation and large-
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eddy simulation of turbulent flows [17, 18, 19]. The compact schemes, originally
formulated for finite differences on a uniform grid, have been extended to the finite
volume formulation [20, 21] and nonuniform grids [22, 23, 24]. Linear compact schemes
yield oscillatory solutions for flows with discontinuities, such as shock waves and
contact discontinuities, and thus a limiter is needed to ensure nonoscillatory behavior.
A nonlinearly stable compact scheme with a total variation bounded (TVB) limiter
was introduced in [25] for shock calculations and further improved in [26].

There are several studies in the literature seeking to construct an algorithm with
the nonoscillatory behavior of the ENO/WENO schemes as well as the improved
spectral resolution of the compact schemes. Such algorithms would be ideal for the
simulation of compressible turbulent flows, where small length scales as well as dis-
continuities need to be resolved accurately. A hybrid compact-ENO was presented
[27] where the compact scheme is coupled with the ENO scheme. The smoothness of
the solution is used to switch between the two schemes, and the resulting algorithm
is shown to have an improved resolution in smooth regions of the solution, while
maintaining nonoscillatory behavior across discontinuities. The algorithm was used
for the direct numerical simulation of turbulent flow over a compression ramp [28]. A
similar algorithm [29], coupling the compact schemes with WENO schemes, was pre-
sented and applied to shock-turbulence interactions. A conservative compact scheme
was used for better coupling with the conservative WENO scheme and to ensure a
globally conservative algorithm. The hybrid compact-WENO scheme was further im-
proved [30] by introducing a smooth transition between the WENO and the compact
scheme. Thus, the reconstructed flux is a weighted combination of the WENO and
compact schemes where the weight depends on the smoothness of the solution. The
hybrid scheme was also extended to the characteristic space to yield physically more
robust solutions. While the hybrid schemes constructed show improved resolution
while being nonoscillatory, they require indicators to detect discontinuities. They
also suffer from the drawback that they switch to a noncompact scheme at and near
discontinuities, thus resulting in a loss of resolution.

As an alternative to the hybrid schemes, a nonlinear compact scheme was pre-
sented [31] where adaptive stenciling (similar to the ENO algorithm) is used with
candidate compact interpolations. Third and fourth order schemes were constructed.
The scheme was extended in [32], where the WENO algorithm is used to compute the
interface fluxes and a compact interpolation is used to compute high order finite differ-
ence approximations of the derivative at the cell center from the interface fluxes. While
the earlier scheme required three tridiagonal inversions, corresponding to each of the
three candidate ENO stencils (for a third order scheme), the improved scheme with
the WENO reconstruction required just one such inversion. The scheme was further
improved [33] by directly interpolating the fluxes instead of the conserved variables.
A similar algorithm was described in [34], where a hybrid ENO-Padé scheme was con-
structed. A compact scheme is used to compute the derivatives at the cell centers from
the interface values while the ENO scheme is used to reconstruct the interface values.
These schemes show marginal improvement in their resolution characteristics because
of the noncompact reconstruction at the interfaces. We would like to note here that the
phrase “compact central WENO scheme” has been used to describe a central WENO
algorithm with a 3-point stencil in [35]. However, the substencils in the WENO al-
gorithm are not compact (in the sense that there is no coupling of the reconstruction
or a derivative to increase the order of accuracy); they are noncompact second and
third order stencils, with the final scheme being third order for smooth flows. Thus,
their scheme is not truly compact (their order of accuracy is the same as the stencil
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width) and lacks the spectral resolution properties of a compact (coupled) scheme.
A weighted compact scheme was constructed [36] where the final compact scheme

was a weighted combination of compact substencils. In their implementation, the
candidate stencils were two biased third order compact stencils and a central fourth
order compact stencil. The optimal interpolation, for smooth solutions, was a sixth
order central compact interpolation. While their work was a novel attempt at a
nonoscillatory scheme, there were a few drawbacks. The underlying scheme, being
central (and without additional dissipation), lacked the upwinding necessary to yield
robust solutions to the Euler equations. The smoothness indicators that they use are
the same as those of Jiang and Shu [8] and are designed for third order noncompact
stencils. Their application to a fourth order central stencil may not have been correct.
The extension of the scalar interpolation techniques to vector quantities is unclear in
their study, and it is not discussed if their schemes were implemented in the char-
acteristic space. It is well known that a characteristic reconstruction is necessary to
yield nonoscillatory solutions for inviscid flow problems. These drawbacks resulted in
limited applicability of their algorithm to the Euler system.

In the present paper, a class of compact-reconstruction WENO (CRWENO)
schemes is constructed and extended to a system of equations. Our motivation is
to implement a scheme that shows superior resolution for solutions with discontinu-
ities as well as high-frequency signals. We employ the idea that is described in [36];
however, there are differences that result in a more robust scheme. At each interface,
lower order compact stencils are identified as candidate stencils that can be combined
with optimal weights to yield a higher order compact interpolation. In our implemen-
tation, the lower order candidate stencils, as well as the higher order optimal stencil,
are biased compact interpolations, and thus our scheme is upwind. The higher or-
der compact interpolation is shown to have superior spectral properties as compared
to a noncompact interpolation of the same order (or even higher) and comparable
resolution to compact schemes presented in the literature [10, 32]. The WENO lim-
iting is applied to these weights, and it is observed that the smoothness indicators of
Jiang and Shu work well with our compact substencils, thus yielding nonoscillatory
solutions. The final interpolation scheme results in a tridiagonal system of equations.
However, it should be noted that, unlike compact schemes previously presented in
the literature (except that in [36]), the coefficients in our tridiagonal system are a
function of the stencil weights, which are solution-dependent. Thus, a prefactoring of
the system of equations is not possible and a tridiagonal inversion is required at each
time step. The scalar interpolation scheme thus described is extended to the Euler
equations of fluid dynamics, which are a system of hyperbolic conservation laws. The
compact interpolation, with the WENO limiting, is carried out on either the con-
served or the characteristic variables. While the application of the compact schemes
to the conserved variables is a trivial extension of the scalar algorithm, the application
on the characteristic variables requires the solution of a block tridiagonal system of
equations at each iteration.

The paper is outlined as follows. Section 2 describes the numerical method and
discretization of a scalar hyperbolic PDE as well as the time marching procedure
used in the present study. Section 3 describes the conventional WENO schemes and
introduces the CRWENO schemes. The fifth order WENO and CRWENO schemes
are described in detail since they are used for numerical studies. Boundary treatment
and the computational expense of the new schemes are discussed. Section 4 applies
these schemes to two scalar conservation laws: the linear advection equation and
the inviscid Burgers equation. Smooth solutions are used to study the error and
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convergence properties of the schemes, while discontinuous solutions with different
waveforms are used to assess the behavior of the schemes on different discontinuities.
The computational expense of the new schemes is studied and compared to that of
the WENO scheme. The extension of these schemes to the Euler equations of fluid
dynamics is discussed in section 5. Section 6 applies the compact schemes to different
one- and two-dimensional flow cases. Conclusions are presented in section 7.

2. Numerical method and discretization. A generic scalar conservation law
in one space dimension can be expressed as

(2.1) ut + fx = 0,

where u(x, t) is the conserved quantity and f(x, t) = f(u(x, t)) is the flux function.
The subscripts denote partial derivatives and t and x are time and distance, respec-
tively. Equation (2.1) is discretized on a uniformly spaced grid where j is the grid
index, xj is the cell center of the jth cell, and xj+1/2 is the interface between cells j
and j+1. A conservative finite difference discretization of (2.1) results in an ordinary
differential equation (ODE), expressed as

(2.2)
duj

dt
+

1

Δx
[h(xj+1/2, t)− h(xj−1/2, t)] = 0,

where uj = u(xj , t) is the cell-centered value of u(x, t) in cell j. The numerical flux
function h(x) is required to satisfy exactly [5]

(2.3)
∂f

∂x

∣∣∣∣
x=xj

=
1

Δx
[h(xj+1/2, t)− h(xj−1/2, t)]

and can thus be defined implicitly as

(2.4) f(x) =
1

Δx

∫ x+Δx/2

x−Δx/2

h(ξ)dξ.

The approximation of the numerical flux at the interfaces h(xj+1/2) from the discrete
values of flux f(xj) at cell centers is the reconstruction step outlined in the next
section. Equation (2.2) can be solved using any ODE solver by discretizing in time
where n is the time index, dt is the time-step size, tn = ndt is the nth time level, and
un = u(x, tn) is the solution at tn. The Euler explicit scheme results in first order
accuracy. In the present study, the third order total variation diminishing Runge–
Kutta (TVD-RK3) scheme [4] is used with higher order reconstruction. Given the
solution at tn, the solution at tn+1 can be obtained as

v(0) = un,

v(1) = v(0) + σL(v(0)),

v(2) =
3

4
v(0) +

1

4
(v(1) + σL(v(1))),

v(3) =
1

3
v(0) +

2

3
(v(2) + σL(v(2))),

un+1 = v(3),(2.5)

where σ is the CFL number. The residual function L(u) is

(2.6) L(u) = −[h(xj+1/2, t)− h(xj−1/2, t)].

Thus, given initial conditions u(x, 0) = u0(x), (2.1) can be numerically solved to yield
the solution u(x, t) at any given time.
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3. Reconstruction. The solution of a hyperbolic PDE or a system of equations
is composed of waves. A scalar solution comprises a right or left running wave. The
reconstruction of the numerical flux at the interfaces models this wave phenomenon
through upwinding. At each interface, the flux can be approximated using a left or
right biased interpolation. The appropriate interpolation is chosen based on the sign
of the wave speed, which in the case of a scalar PDE is given by f ′(u).

hj+1/2 = hL
j+1/2 if f ′(u)|x=xj+1/2

> 0,

= hR
j+1/2 if f ′(u)|x=xj+1/2

< 0,(3.1)

where the superscripts L and R denote left and right biased interpolations respectively.
The approximation of the left biased numerical flux hL

j+1/2 is described in this section.

The approximation of the right biased flux hR
j+1/2 follows a similar process. The

superscripts are omitted in the subsequent description.
The reconstruction process seeks to approximate the numerical flux to the desired

order; i.e., we find an approximate flux function f̂(x) ≈ h(x) such that

∂f

∂x

∣∣∣∣
x=xj

=
hj+1/2 − hj−1/2

Δx

=
f̂j+1/2 − f̂j−1/2

Δx
+O(Δxr),(3.2)

where r is the desired order of the scheme. As an example of noncompact interpola-
tions, for r = 5, we have

f̂j+1/2 =
1

30
fj−2 − 13

60
fj−1 +

47

60
fj +

27

60
fj+1 − 1

20
fj+2

= hj+1/2 − 1

60

∂5f

∂x5

∣∣∣∣
x=xj

Δx5 +O(Δx6).(3.3)

A fifth order compact interpolation is given by

(3.4)
3

10
f̂j−1/2 +

6

10
f̂j+1/2 +

1

10
f̂j+3/2 =

1

30
fj−1 +

19

30
fj +

10

30
fj+1,

which gives an error of

(3.5) f̂j+1/2 = hj+1/2 − 1

600

∂5f

∂x5

∣∣∣∣
x=xj

Δx5 +O(Δx6).

Thus, the magnitude of the leading error term in the compact interpolation is an order
of magnitude less than the corresponding noncompact interpolation of the same order.
Figures 3.1(a) and 3.1(b) show the dispersion and dissipation characteristics of the
noncompact and compact fifth order schemes. The compact scheme is much better
at resolving higher frequencies. It can be seen that the fifth order compact scheme
has a better spectral fidelity than the ninth order noncompact scheme. Although
the compact scheme is more dissipative at higher frequencies, the phase error is large
there for all schemes and the higher dissipation helps in filtering out high-frequency
errors. At frequencies where the phase error is low, the compact fifth order scheme
has less dissipation than the noncompact fifth order scheme and is comparable to the
ninth order noncompact scheme.
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Fig. 3.1. Spectral characteristics of the first order, noncompact fifth order, noncompact ninth
order and compact fifth order schemes, and comparison of the present scheme with previously pub-
lished compact and optimized schemes

The spectral fidelity of the schemes can be quantified by the “bandwidth-resolving
efficiency” [10], which is the phase (as a fraction of π) at which the error in the
modified phase exceeds 0.01. The bandwidth-resolving efficiency is 0.35 for the fifth
order noncompact interpolation (3.3) with a 5-point stencil, 0.42 for a seventh order
noncompact interpolation with a 7-point stencil, and 0.48 for a ninth order noncom-
pact interpolation with a 9-point stencil. The fifth order compact scheme (3.4) with
a 3-point stencil achieves an efficiency of 0.6, which shows a significant improvement
over these noncompact schemes. This compares well with the efficiencies of the cen-
tral compact schemes introduced by Lele [10] (0.58 for an eighth order tridiagonal
scheme and 0.61 for an eighth order pentadiagonal scheme). Bandwidth-optimized
WENO schemes have been presented for direct numerical simulation of turbulent
flows [37] where a symmetric stencil is used for interpolation with biased coefficients
for upwinding. The coefficients are such that the dissipation and dispersion errors
are minimized and the bandwidth is maximized. The resulting improved bandwidth-
resolving efficiencies of these noncompact interpolation schemes are 0.49 for a scheme
with a 6-point stencil and 0.56 for a scheme with an 8-point stencil. These are still
lower than that of the fifth order compact scheme.
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Figure 3.1(c) shows a comparison of the spectral resolution of the fifth order com-
pact scheme, (3.4), with compact and resolution-optimized schemes in the literature.
The schemes “Compact-6th” and “Compact-8th” refer to the sixth and eighth or-
der tridiagonal schemes of Lele [10], respectively. The fifth order weighted compact
nonlinear scheme [32], “WCNS5,” uses a cell-centered compact scheme (sixth order)
for computing the derivatives. However, the interface values are computed using the
noncompact WENO scheme, and thus the resolution of the scheme is only marginally
better than a regular fifth order scheme. The scheme “WENO-SYMOO” refers to
the optimized WENO scheme [37] (r = 4, which would have yielded a seventh order
scheme without the optimization) for improved bandwidth resolution, proposed for
the direct numerical simulation of turbulence. The fifth order compact scheme, which
is the basis of our compact-reconstruction WENO schemes, compares favorably with
these schemes.

The fifth order compact interpolation, (3.4), uses a biased 3-point stencil (j −
1, j, j+1) to compute the interface flux at j+1/2. A sixth order compact interpolation
can be constructed with the stencil (j−1, j, j+1, j+2), which is symmetric. Such an
interpolation would be central and thus would not have the upwinding required to give
stable solutions. However, with biased coefficients, a fifth order compact interpolation
can be constructed with the symmetric stencil, given by

(3.6)
5

20
f̂j−1/2 +

12

20
f̂j+1/2 +

3

20
f̂j+3/2 =

1

120
(3fj−1 + 67fj + 49fj+1 + fj+2),

resulting in an even lower absolute error of

(3.7) f̂j+1/2 = hj+1/2 − 1

1200

∂5f

∂x5

∣∣∣∣
x=xj

Δx5 +O(Δx6).

The left biased low-dissipation compact interpolation uses a wider stencil by including
data at the (j + 2)th grid cell. However, for systems of equations, as discussed in
subsequent sections, the final flux is a combination of the left and right biased fluxes.
The computation of the right biased flux with a fifth order compact interpolation
would use the stencil (j, j + 1, j +2), and the overall stencil for the calculation of the
flux at the (j + 1/2)th interface would be (j − 1, j, j + 1, j + 2). Thus, an algorithm
based on the low-dissipation compact interpolation does not use data from a wider
stencil, compared to the compact interpolation.

Hyperbolic conservation laws admit discontinuous solutions, and these interpo-
lation schemes suffer from oscillations across discontinuities. The WENO schemes
use adaptive stenciling to achieve the high order of accuracy at smooth regions of
the solution while switching to lower order interpolation to avoid oscillations near
discontinuities.

3.1. WENO schemes. The WENO schemes [7, 8] are based on the idea of
combining lower order candidate stencils at an interface to get a higher order interpo-
lation in smooth regions and a nonoscillatory interpolation near discontinuities. The
general form of the interface flux reconstructed by the WENO scheme is

(3.8) f̂j+1/2 =

r∑
k=1

ωkf̂
k
j+1/2,

where r is the number of candidate stencils (of rth order), fk
j+1/2 is the interpolated

flux at xj+1/2 using the kth candidate stencil, and ωk is the weight of kth stencil
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in the convex combination. There exist optimal weights ck, k = 1, . . . , r, such that
if ωk = ck ∀k, the resulting interpolation is (2r − 1)th order accurate. The WENO
limiting process causes the stencil weights to attain their optimal values where the
solution is smooth. Across or near a discontinuity, the weight of the stencil containing
the discontinuity approaches zero to yield a nonoscillatory interpolated flux. This is
achieved by scaling the optimal weights by smoothness indicators of the respective
stencils [8], i.e.,

(3.9) αk =
ck

(βk + ε)m
,

where βk is the smoothness indicator of the kth stencil, ε is a small number to pre-
vent division by zero, and m is chosen such that the weights for nonsmooth stencils
approach zero quickly (in the present study, m = 2 is used for all cases). To ensure
convexity, the weights αk are normalized as

(3.10) ωk =
αk∑
k αk

.

The resulting interpolation is thus (2r− 1)th order accurate in smooth regions of the
solution and nonoscillatory near discontinuities.

The weights, (3.9), have been shown to be excessively dissipative and a loss of
accuracy has been observed for smooth solutions with vanishing derivatives. Sev-
eral attempts have been presented in the literature that improve the behavior of the
WENO schemes for such cases. A mapping of the weights has been proposed [38] that
causes the WENO weights to converge faster to their optimal values, defined by the
function

(3.11) gk(ω) =
ω(ck + c2k − 3ckω + ω2)

c2k + ω(1− 2ck)
.

The new weights are given by

(3.12) αM
k = gk(ωk),

which are then normalized for convexity to give the mapped WENO weights. The
primary drawback of the mapping is the additional computational cost of the map-
ping function. Alternative formulations for the weights have been suggested in the
literature [39, 40] which have the same benefits as the mapping function without the
additional expense. The weights are defined as

(3.13) αk = ck

(
1 +

τ

ε+ βk

)
.

The factor τ is defined as the absolute difference between the leftmost and rightmost
smoothness indicators by [39], while it is defined as the square of the divided differ-
ence of the appropriate order by [40]. A complete discussion of the relative merits
and demerits of these approaches is outside the scope of this paper, and the results
presented here use the mapping of the weights. However, our CRWENO schemes can
be used with the weights defined by (3.13) as well with only minor differences in the
solutions for long-term convections, and the analyses and conclusions are identical to
those that we present in this paper.
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The fifth order WENO scheme of Jiang and Shu [8] (r = 3) is constructed by
combining three third order candidate interpolations, given by

f̂1
j+1/2 =

1

3
fj−2 − 7

6
fj−1 +

11

6
fj ,(3.14)

f̂2
j+1/2 = −1

6
fj−1 +

5

6
fj +

1

3
fj+1,(3.15)

f̂3
j+1/2 =

1

3
fj +

5

6
fj+1 − 1

6
fj+2.(3.16)

The optimal weights are c1 = 1/10, c2 = 6/10, c3 = 3/10, which yield the fifth order
interpolation, (3.3). The weights can thus be computed using (3.9) and (3.10), and
the final form of the WENO5 scheme can be expressed as

f̂j+1/2 =
ω1

3
fj−2 − 1

6
(7ω1 + ω2)fj−1 +

1

6
(11ω1 + 5ω2 + 2ω3)fj

+
1

6
(2ω2 + 5ω3)fj+1 − ω3

6
fj+2.(3.17)

The smoothness indicators are given by

β1 =
13

12
(fj−2 − 2fj−1 + fj)

2 +
1

4
(fj−2 − 4fj−1 + 3fj)

2,(3.18)

β2 =
13

12
(fj−1 − 2fj + fj+1)

2 +
1

4
(fj−1 − fj+1)

2,(3.19)

β3 =
13

12
(fj − 2fj+1 + fj+2)

2 +
1

4
(3fj − 4fj+1 + fj+2)

2.(3.20)

Higher order WENO schemes with r = 4, 5, 6 have been constructed [9]. While the
schemes have very high orders of accuracy, the primary drawback is the minimal
increase in spectral resolution along with interpolation over wide stencils.

3.2. CRWENO schemes. While higher order WENO schemes based on
noncompact interpolation have been constructed, their primary drawback is the in-
creasingly wide stencil as we increase the order of accuracy. A class of WENO schemes
is presented which use implicit interpolation with compact stencils as their basis. The
CRWENO schemes follow the same procedure as WENO schemes, (3.8)–(3.10). The
candidate interpolations are, however, implicit, resulting in smaller stencils. In
the present section, the construction of the fifth order CRWENO schemes is described.

The fifth order CRWENO scheme (CRWENO5) is constructed using three third
order compact interpolations as candidates. They are

2

3
f̂1
j−1/2 +

1

3
f̂1
j+1/2 =

1

6
(fj−1 + 5fj),(3.21)

1

3
f̂2
j−1/2 +

2

3
f̂2
j+1/2 =

1

6
(5fj + fj+1),(3.22)

2

3
f̂3
j+1/2 +

1

3
f̂3
j+3/2 =

1

6
(fj + 5fj+1).(3.23)

The optimal weights are c1 = 1/5, c2 = 1/2, c3 = 3/10, which result in the fifth order
compact interpolation (3.4). The smoothness indicators, (3.18)–(3.20), are used to
compute the weights of each stencil, resulting in an implicit system given by(

2

3
ω1 +

1

3
ω2

)
f̂j−1/2 +

[
1

3
ω1 +

2

3
(ω2 + ω3)

]
f̂j+1/2 +

1

3
ω3f̂j+3/2

=
ω1

6
fj−1 +

5(ω1 + ω2) + ω3

6
fj +

ω2 + 5ω3

6
fj+1.(3.24)
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The left-hand side is a tridiagonal system, and the convexity of the weights ensures
that none of the main diagonal elements is zero.

A low-dissipation CRWENO scheme (CRWENO5-LD) is constructed based on
the low-dissipation compact interpolation (3.6). The scheme is a combination of four
candidate stencils, three of which are (3.21)–(3.23). The fourth stencil is

(3.25)
1

3
f̂4
j+1/2 +

2

3
f̂4
j+3/2 =

1

6
(5fj+1 + fj+2).

The optimal weights are c1 = 3/20, c2 = 9/20, c3 = 7/20, c4 = 1/20. While the same
smoothness indicators are used for the first three stencils, the smoothness indicator
for the fourth stencil is expressed as

β4 =
13

12
(fj+1 − 2fj+2 + fj+3)

2 +
1

4
(−5fj+1 + 8fj+2 − 3fj+3)

2,

β4 = max(β3, β4).(3.26)

The fourth smoothness indicator is taken as a maximum of itself and the third smooth-
ness indicator to ensure that the weight for the fourth stencil is always less than or
equal to the third stencil, thus preventing a completely downwind interpolation. The
resulting scheme can be expressed as

2ω1 + ω2

3
f̂j−1/2 +

ω1 + 2(ω2 + ω3) + ω4

3
f̂j+1/2 +

ω3 + 2ω4

3
f̂j+3/2

=
ω1

6
fj−1 +

5(ω1 + ω2) + ω3

6
fj +

ω2 + 5(ω3 + ω4)

6
fj+1 +

ω4

6
fj+2.(3.27)

In smooth regions of the solution, where the weights attain their optimal values, the
CRWENO5-LD scheme is theoretically expected to give half the absolute error of the
CRWENO5 scheme.

The CRWENO schemes result in a globally coupled tridiagonal system of equa-
tions for the interface fluxes for a smooth solution, as is characteristic of compact
schemes. However, coupling across discontinuities introduce nonphysical oscillations,
and this is avoided in our schemes by the WENO weights, which essentially decouples
the subdomains on either side of the discontinuity. Adjacent to a discontinuity, the
corresponding weight approaches zero and the equation for the interface flux reduces
to a biased bidiagonal equation. Thus, discontinuities in the solution partition the
domain, and the fluxes are reconstructed in a coupled fashion within each smooth
subdomain. At the discontinuity, the scheme employs a third order compact in-
terpolation which has a better spectral resolution than a third order noncompact
scheme. Hybrid compact-ENO/WENO schemes [27, 29, 30], on the other hand, use a
noncompact interpolation across and near discontinuities, thus compromising on the
resolution of the scheme at these critical points.

3.3. Boundary treatment. The CRWENO schemes described above apply to
interior interfaces. Thus, they can be applied at all interfaces for problems with
periodic/infinite boundary conditions. This results in a periodic tridiagonal system
which can be solved with O(N) complexity, where N is the number of grid points.
Aperiodic problems require special treatment at the boundary interfaces where (3.24)
and (3.27) do not apply. It should be noted that for a multidimensional domain,
the compact scheme described here is implicit along each dimension, and the linear
system of equations, with the appropriate boundary treatment, is solved separately
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for each grid line, at interfaces along each dimension. In our implementation, the flux
at the boundary interfaces, i.e., the first and last interfaces along each grid line, is
reconstructed using the WENO5 procedure (3.17). The resulting tridiagonal system
of equations can be represented as

(3.28)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . . . . . . . 0
a b c 0 . . . . . . 0
. . .
. . .
. . .
0 . . . . . . 0 a b c
0 . . . . . . . . . 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̂1/2
.
.

f̂j+1/2

.

.

f̂NJ+1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

r̂WENO5
1/2

.

.
r̂CRWENO5
j+1/2

.

.
r̂WENO5
NJ+1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where NJ is the total number of grid points, r̂WENO5 is the right-hand side of (3.17),
and r̂CRWENO5 is the right-hand side of (3.24) or (3.27). The coefficients a, b, and c
represent the coefficients on the left-hand side of (3.24) or (3.27). Our numerical tests
do not show any loss of accuracy or resolution due to this boundary treatment. The
data required by the WENO5 scheme at the boundaries are provided by using ghost
points.

3.4. Computational expense. The CRWENO5 and CRWENO5-LD schemes
result in a tridiagonal system of equations, represented by (3.28). The WENO weights,
and thus the coefficients in the matrix, are solution-dependent, and therefore the
tridiagonal matrix inversion is needed at each iteration. A one-dimensional problem
requires one matrix inversion, while for multidimensional problems, a tridiagonal in-
version is required along each grid line, along each dimension. As an example, for
a two-dimensional domain, discretized by an NI × NJ mesh, the compact schemes
require (NI +NJ) tridiagonal inversions. While the tridiagonal inversion is of O(N)
complexity, scaling linearly with the number of mesh points, this introduces a com-
putational overhead.

However, the spectral properties of the compact schemes imply that coarser grids
may be used to achieve the same resolution as a noncompact scheme of the same
order of convergence. Taylor series analysis predicts an error that is a tenth of the
noncompact scheme of the same order, as shown in previous sections. Thus, for fifth
order convergence, the WENO5 scheme would require a grid that is 101/5 or 1.6
times as fine to achieve the same accuracy as the CRWENO5 scheme, and a grid
that is 201/5 or 1.8 times as fine to achieve the same accuracy as the CRWENO5-LD
scheme. These represent substantial savings in the computational expense and are
amplified in multidimensions. The computational efficiency of the CRWENO schemes
are studied in the following sections, and results comparing the errors and run-times
of the WENO5, CRWENO5, and CRWENO5-LD schemes are presented.

4. Numerical results: Scalar equations. The compact schemes presented in
the previous section are analyzed. Their behavior, in terms of accuracy and conver-
gence properties, is studied on the linear advection equation and the inviscid Burgers
equation. The schemes are tested on both smooth and nonsmooth data and com-
pared with WENO schemes. The linear advection equation is the simplest example
of a scalar hyperbolic PDE, while the inviscid Burgers equation is an example of a
scalar nonlinear hyperbolic PDE. The convergence behavior of the schemes is studied
on smooth problems for which the exact solution is known. The behavior of CR-
WENO schemes across discontinuities is compared with that of the WENO schemes.
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The first order scheme is used with Euler explicit time marching, while the fifth order
WENO and CRWENO schemes are used with TVD-RK3 time marching in all cases.

4.1. Linear advection equation. The linear advection equation is given by

(4.1) ut + ux = 0.

The flux function in (2.1) for the advection equation is f(u) = u. Given an initial
condition u(x, 0) = u0(x), the exact solution at any time is given by

(4.2) u(x, t) = u0(x− t).

The solution consists of a single wave running in the positive x-direction. Thus, during
the reconstruction process, the left biased interpolations are used in (3.1).

The convergence properties of the schemes are tested using an example with
smooth data. The domain is −1 ≤ x ≤ 1 and the initial condition is specified as

(4.3) u0(x) = sin

(
πx− sin(πx)

π

)
.

Periodic boundary conditions are used and the solution is obtained after one cycle
over the periodic domain. Tables 4.1 and 4.2 show the L2 errors and convergence
rates (rc) for the WENO5, CRWENO5, and CRWENO5-LD schemes, along with the
Explicit5 (3.3), Implicit5 (3.4) and the Implicit5-LD (3.6) schemes that they are based
on. The grid was progressively refined from 20 points to 640 points for the error and
convergence analysis. The initial CFL (for the grid of 20 points) is 0.1 and is reduced
by a factor of 2/(25/3) at each refinement (since the spatial interpolation is fifth order
and time marching is third order, this ensures that time discretization errors converge
at the same rate as the space discretization ones). A low CFL number is chosen to
ensure that the errors due to time discretization are significantly lower than those due
to space discretization. Figure 4.1(a) shows the L2 norm of the errors for the different
schemes as a function of the number of grid points. The smoothness indicators, and
thus the errors and convergence behaviors, show some irregularities at very coarse
grids for all the schemes. However, as the grids are refined, the WENO weights
converge to their optimal values for this smooth problem. The errors and convergence
behaviors are identical for each of the WENO scheme and its optimal counterpart.
The errors for the CRWENO5 and Implicit5 schemes are almost an order of magnitude
lower than those for the WENO5 and Explicit5 schemes at all grid levels. The errors
from CRWENO5-LD and Implicit5-LD are almost half of those from CRWENO5 and
Implicit5 for finer grids. These observations are consistent with the Taylor series

Table 4.1

L2 errors and convergence rates for Explicit5, Implicit5, and Implicit5-LD with smooth initial
data (linear advection).

Explicit5 Implicit5 Implicit5-LD
N Error rc Error rc Error rc
20 2.729E-03 - 3.520E-04 - 1.981E-04 -
40 9.639E-05 4.82 1.052E-05 5.06 5.599E-06 5.15
80 3.077E-06 4.97 3.244E-07 5.02 1.704E-07 5.04
160 9.664E-08 4.99 1.011E-08 5.00 5.291E-09 5.01
320 3.024E-09 5.00 3.157E-10 5.00 1.653E-10 5.00
640 9.508E-11 4.99 1.075E-11 4.88 6.335E-12 4.71
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Table 4.2

L2 errors and convergence rates for WENO5, CRWENO5, and CRWENO5-LD with smooth
initial data (linear advection).

WENO5 CRWENO5 CRWENO5-LD
N Error rc Error rc Error rc
20 2.250E-03 - 6.508E-04 - 6.919E-04 -
40 9.414E-05 4.58 1.247E-05 5.71 9.644E-06 6.17
80 3.069E-06 4.94 3.390E-07 5.20 2.027E-07 5.57
160 9.663E-08 4.99 1.024E-08 5.05 5.569E-09 5.19
320 3.024E-09 5.00 3.171E-10 5.01 1.679E-10 5.05
640 9.509E-11 4.99 1.077E-11 4.88 6.357E-12 4.72

Fig. 4.1. L2 error and numerical cost of different schemes for the linear advection equation.

analysis of these schemes. Thus, at the same grid resolution, the compact schemes
show significantly lower absolute errors for the same order of convergence.

The compact schemes require the solution of a tridiagonal system of equations
and are computationally more expensive than the WENO scheme. The weights, and
thus the coefficients of the left-hand side of the system of equations, are solution-
dependent and the linear system is required to be solved at each iteration. Table 4.3
shows the L2 norm of the error and the computational run-time (T ) for the WENO5,
CRWENO5 and CRWENO5-LD schemes for different grid resolutions after 500 cycles
over the periodic domain. The CFL for the initial grid of 20 points is 0.1 and is
reduced as described previously, to maintain fifth order accuracy. The CRWENO5
and CRWENO5-LD schemes are computationally more expensive at the same grid

Table 4.3

L2 errors and computational run-time (in seconds) for WENO5, CRWENO5, and CRWENO5-
LD with smooth initial data (linear advection).

WENO5 CRWENO5 CRWENO5-LD
N Error T Error T Error T
20 1.549E-01 1.11 8.236E-02 1.62 7.201E-02 2.11
30 8.416E-02 2.45 - - - -
40 3.155E-02 6.89 4.436E-03 10.02 2.277E-03 12.94
60 5.729E-03 15.20 - - - -
80 1.480E-03 42.73 1.603E-04 61.66 8.343E-05 80.53
120 2.033E-04 95.28 - - - -
160 4.824E-05 268.85 5.047E-06 388.24 2.635E-06 516.89
240 6.404E-06 602.76 - - - -
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resolution. However, the absolute errors are an order of magnitude lower than the
WENO5 scheme. A comparison of the computational expense is made for solutions
having the same order of absolute errors. The CRWENO5 scheme yields errors that
are a tenth of the WENO5 scheme, thus it is expected that the WENO5 scheme will
yield the same error on a grid that has 1.6 times more points. The table shows the
errors and run-times for the WENO5 schemes on grids with 30, 60, 120, and 240 points
for which the errors are of the same order of magnitude as the compact schemes on
grids with 20, 40, 80, and 160 points, respectively. It is observed that the compact
schemes require lower grid resolutions, and thus lower computational expense, to yield
solutions with comparable errors. Figure 4.1(b) shows the L2 norm of the error as a
function of the run-time for the WENO5, CRWENO5, and CRWENO5-LD schemes.
The previous observation is reiterated: while the compact schemes are more expensive
at the same grid resolution, they are substantially less expensive for similar absolute
errors in the solution.

The behavior of the schemes across discontinuities is analyzed for a case compris-
ing a square wave, an exponential wave, a triangular wave, and a parabolic wave. The
initial conditions are given by

u0(x) = exp

(
− log(2)

(x+ 7)2

0.0009

)
if − 0.8 ≤ x ≤ −0.6

= 1 if − 0.4 ≤ x ≤ −0.2

= 1− |10(x− 0.1)| if 0 ≤ x ≤ 0.2

= [1− 100(x− 0.5)2](1/2) if 0.4 ≤ x ≤ 0.6

= 0 otherwise,(4.4)

where the domain is −1 ≤ x ≤ 1. Periodic boundary conditions are applied and the
solution is obtained after one cycle over the domain at a CFL of 0.5.

Figure 4.2(a) shows the solution on a grid with 160 points for the WENO5,
CRWENO5, and CRWENO5-LD schemes at a CFL of 0.5, while Figures 4.2(b) and
Figure 4.2(c) show the magnified solution for the exponential and square waves. The
CRWENO5 and CRWENO5-LD schemes are seen to be nonoscillatory, thus validating
that the smoothness indicators and the WENO weights work well with the compact
stencils. Across the discontinuities, the compact schemes are less dissipative than
the WENO5 scheme on the same grid. In the case of the exponential and triangular
waves, the compact schemes show less clipping at the extrema than the WENO5. The
discontinuities in the square wave are less smeared with CRWENO5 and CRWENO5-
LD.

While the solutions from the CRWENO5 and CRWENO5-LD schemes were simi-
lar after one cycle over the periodic domain, the lower dissipation in the CRWENO5-
LD scheme results in better resolution for long-term convection of waves. Figure 4.3
shows the magnified solution around the square and triangular waves after 100 cycles
on a grid with 160 points at a CFL of 0.1. The WENO5, CRWENO5, and CRWENO5-
LD schemes are compared. The compact schemes perform significantly better than
the WENO5 scheme for both waveforms. The difference in the solutions from the
CRWENO5 and CRWENO5-LD schemes can be observed, and the CRWENO5-LD
shows improved resolution of the square and triangular waves. Figure 4.3(b) shows the
computational cost (run-time in seconds) for the various schemes, and it is observed
that the compact schemes are more expensive than the WENO5 scheme at the same
grid resolution. The solution of the WENO5 scheme on a grid with 240 points is
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Fig. 4.2. Solution of the linear advection equation after one cycle for discontinuous data on a
160-point grid.

Fig. 4.3. Solution of the linear advection equation after 100 cycles (160-point grid) for dis-
continuous data (number in parentheses in the legend for the right-hand figure is the run-time in
seconds).

included in the figure for comparison. It is observed that the solutions from the com-
pact schemes on a grid with 160 points are comparable with the WENO5 solution on
a 240-point grid. As observed previously for the smooth solution, the CRWENO5 and
CRWENO5-LD schemes are computationally less expensive when comparing solutions
with similar errors.

The two test problems for the linear advection equation demonstrate the prop-
erties of the CRWENO schemes. While the scheme achieves its optimal order of
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convergence for smooth problems as expected, the absolute value of the errors are
lower than the WENO scheme of the same order. Across discontinuities, the CR-
WENO schemes show an improved resolution compared to the WENO scheme. The
lower dissipation and dispersion errors in the compact schemes translate to better ca-
pabilities at preserving the waveforms during long-term convection. It should be noted
that the long-term convection errors are also sensitive to the choice of weights, and
this is an area of active research. Though the compact schemes are costlier than the
WENO scheme at the same grid size due to the tridiagonal matrix inversion at each
iteration, the lower absolute errors implies that coarser grids may be used to resolve
the solution (smooth or discontinuous) to the same accuracy. Thus, the numerical
cost of the compact schemes is actually lower with accuracy as the benchmark.

4.2. Inviscid Burgers equation. The inviscid Burgers equation is an example
of a scalar nonlinear hyperbolic PDE, given by

(4.5) ut + uux = 0.

The flux function in (2.1) is thus f(u) = u2/2. The characteristic speed is f ′(u) = u,
and therefore the solution consists of a wave propagating at the local value of u. The
shock formation from an initially smooth solution is solved in the present study. The
problem provides an initial flow in which the solution is smooth, thus allowing for
convergence order estimates. After a certain time, a shock forms in the solution and
the nonoscillatory nature of the schemes can be assessed. The initial condition is a
sine wave given by

(4.6) u0(x) =
1

2πts
sin(2πx),

where ts is a free parameter specifying the time of shock formation (ts = 2 in the
present study). Periodic boundary conditions are implemented and the exact solution,
prior to shock formation, is defined implicitly as

(4.7) u(x, t) =
1

2πts
sin[2π(x− u(x, t)t)].

An iterative procedure with an initial guess is used to compute the exact solution to
machine zero accuracy.

Convergence analysis is done for solutions obtained at t = 1, prior to shock
formation. The grid is progressively refined from 20 to 640 points. The initial CFL
(for the grid with 20 points) is 0.1 and is reduced at each refinement to ensure that
time discretization errors converge at the same order as space discretization ones. The
L2 errors are plotted against grid size in Figure 4.4(a) for the WENO5, CRWENO5,
and CRWENO5-LD schemes. Errors from the Explicit5, Implicit5, and Implicit5-LD
schemes are also plotted for comparison since they should be identical to the WENO
schemes for a smooth solution. It is observed that the WENO limiting results in
nonoptimal weights at very coarse grids. However, at finer grids, the WENO schemes
attain their optimal accuracy, and the errors are identical to the schemes without the
limiting. As in the case of the linear advection equation, the CRWENO5 scheme shows
significantly lower errors (almost an order of magnitude lower) at all grid resolution,
compared to the WENO5 scheme. The CRWENO5-LD scheme has an even lower
error (half that of the CRWENO), except on very coarse meshes. Thus, the accuracy
and convergence behavior of the compact-reconstruction schemes are thus validated
on a nonlinear problem.
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Fig. 4.4. Inviscid Burgers equation: errors and convergence analysis before shock formation
and solution with different schemes after shock formation.

Figure 4.4(b) shows the solution at t = 3 after the formation of a shock on a grid
with 20 points for a CFL of 0.5. Solutions obtained using the first order, WENO5,
CRWENO5, and CRWENO5-LD schemes are shown. The “fine grid solution” is the
solution obtained on a grid of 2000 points with the WENO5 scheme since the exact
solution is not available in analytical form. The solutions obtained using the WENO5,
CRWENO5, and CRWENO5-LD schemes are seen to be identical for this problem.
The nonoscillatory nature of the compact-reconstruction schemes is validated for the
nonlinear problem.

5. Extension to the Euler equations of fluid dynamics. The one-dimensional
Euler equations can be expressed in the form of a hyperbolic conservation law as

(5.1) ut + Fx = 0,

where u = [ρ ρu e]T and F(u) = [ρu (ρu2 + p) (e + p)u]T . The fluid density is ρ,
the pressure is p, and velocity is u. The equation of state relates the internal energy
e to the flow variables [2]. The two-dimensional Euler equations can be similarly
expressed. The discretization described in section 2 can be extended to the system of
equations. The TVDRK3 scheme is used for time marching with high order spatial
schemes.

The discretization described above requires the approximation of the numerical
flux function F̂j+1/2, which is a vector quantity, at the interfaces. The previous sec-
tions described the interpolation of a scalar quantity using the WENO and CRWENO
family of schemes. These schemes can be applied to the Euler system in two possible
ways. The scalar interpolation can be applied individually to each component of the
vector flux function, and this will be referred to as the conserved variable reconstruc-
tion (as an alternative, the primitive flow variables, ρ, u, p, can be reconstructed at
each interface and the interface flux then calculated). The extension of the scalar inter-
polation schemes to the reconstruction of conserved (and primitive) variables is trivial.

The hyperbolicity of the Euler equations implies that the solution is composed
of waves. The characteristic speeds and directions of these waves are given by the
eigenvalues and eigenvectors of the flux Jacobian matrix. The conserved variable
reconstruction computes the left and right biased interface fluxes (F̂L

j+1/2, F̂
R
j+1/2),

and the Roe flux differencing [41] is used to find the upwind interface flux, expressed as

(5.2) F̂j+1/2 =
1

2
(F̂L

j+1/2 + F̂R
j+1/2)−

1

2
|Â(ÛL

j+1/2, Û
R
j+1/2)|(ÛL

j+1/2 + ÛR
j+1/2),
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where Â is the Roe-averaged Jacobian matrix. ÛL,R
j+1/2 are the left and right biased

reconstructed values of U at the interface.
The third approach—reconstruction of the characteristic variables—is physically

more robust than the other two [3, 8]. The wave nature of the solution implies that
along each characteristic the solution is similar to a scalar wave propagation, and
thus application of the scalar interpolation techniques to the characteristic variables
is physically more accurate. At interface xi+1/2, the Roe-averaged Jacobian matrix,

Â(Ui,Ui+1), yields the eigenvalues (λ
k
i+1/2), left eigenvectors (l

k
i+1/2), and right eigen-

vectors (rki+1/2) which define the wave structure at that interface, where k is the index
denoting each characteristic field. The kth characteristic flux at the jth cell is the
component of the flux vector along the kth left eigenvector at the i+ 1/2th interface
and can be expressed as

(5.3) αk
j = lki+1/2 · F(xj).

Equation (3.17) is applied to the characteristic fluxes to compute the left biased
WENO5 approximation of the kth characteristic flux at the interface,

α̂L,k
j+1/2 =

ω1

3
αk
j−2 −

1

6
(7ω1 + ω2)α

k
j−1 +

1

6
(11ω1 + 5ω2 + 2ω3)α

k
j

+
1

6
(2ω2 + 5ω3)α

k
j+1 −

ω3

6
αk
j+2.(5.4)

The right biased characteristic flux, α̂R,k, can be similarly computed. Applying (3.24)
or (3.27) to the characteristic fluxes, we get the general form of the CRWENO5 or
CRWENO5-LD scheme in its characteristic form as

(5.5) aα̂L,k
j−1/2 + bα̂L,k

j+1/2 + cα̂L,k
j+3/2 = âαk

j−1 + b̂αk
j + ĉαk

j+1 + d̂αk
j+2,

where a, b, c, â, b̂, ĉ, d̂ are the appropriate coefficients. Using (5.3) to expand the char-
acteristic fluxes in the above equation, we get a system of equation expressed as

a(lk1F̂
L
1,j−1/2 + lk2F̂

L
2,j−1/2 + lk3F̂

L
3,j−1/2) + b(lk1F̂

L
1,j+1/2 + lk2F̂

L
2,j+1/2 + lk3F̂

L
3,j+1/2)

= âαk
j−1 + b̂αk

j + ĉαk
j+1 + d̂αk

j+2 + c(lk1F̂
L
1,j+3/2 + lk2F̂

L
2,j+3/2 + lk3F̂

L
3,j+3/2),

(5.6)

where lk1, lk2, lk3 are the components of the left eigenvector lkj+1/2 and F̂L
1,j+1/2,

F̂L
2,j+1/2, and F̂L

3,j+1/2 are the components of the flux vector F̂L
j+1/2. The one-

dimensional system of equations has three characteristic fields (k = 1, 2, 3), and (5.6)
results in a 3 × 3 block tridiagonal system. The two- and three-dimensional Euler
equations would require the inversion of 4 × 4 and 5 × 5 block tridiagonal systems,
respectively. The right biased numerical fluxes can be computed in a similar fashion.

The Roe-fixed (RF) formulation [5, 6] is used to compute the upwind characteristic
flux from the left and right biased approximations. It incorporates the local Lax–
Friedrich flux splitting [42] as an entropy fix to the Roe solver [41]. It can be expressed
as

α̂L,k
j+1/2 if λj,j+1/2,j+1 > 0,

α̂k
j+1/2 = α̂R,k

j+1/2 if λj,j+1/2,j+1 < 0,

1

2

[
α̂L,k
j+1/2 + α̂R,k

j+1/2 + λ̃(v̂L,k
j+1/2 − v̂R,k

j+1/2)
]
otherwise,(5.7)
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where λ̃ = μλmax[j, j + 1/2, j + 1] and vkj = lki+1/2 ·U(xj) is the characteristic state
vector. The dissipation parameter, μ, is usually between 1.1 and 1.3.

The two approaches of extending the scalar interpolation schemes to the sys-
tem of equations are compared in the present study for smooth problems as well as
problems with discontinuities. The characteristic reconstruction process is compu-
tationally more expensive than the conserved (or primitive) variables reconstruction
processes. While the difference in computational cost is marginal for the WENO5
scheme, it is significant for the CRWENO5 and CRWENO5-LD schemes where the
characteristic-based reconstruction requires the inversion of a block tridiagonal sys-
tem instead of a tridiagonal system. The conserved variable reconstruction performs
well for smooth problems; however, a characteristic-based reconstruction is required
to yield nonoscillatory solutions for flows with shock waves and contact discontinu-
ities. The description in this section for the one-dimensional Euler equations can be
extended to two- and three-dimensional systems.

6. Numerical results: Euler equations. The compact schemes described in
the previous section are applied to one-dimensional and two-dimensional inviscid flow
problems. The accuracy and convergence properties are analyzed for the advection
of an entropy wave, which is a smooth problem with an exact analytical solution. A
one-dimensional Riemann problem is solved to validate the nonoscillatory nature of
the schemes. The characteristic- and conserved variables–based reconstruction algo-
rithms are compared for these problems since they require a robust solution algorithm
to yield nonoscillatory solutions. Finally, the shock entropy wave interaction prob-
lem is studied since the solution comprises discontinuities as well as high-frequency
waves. The performance of the schemes is analyzed for the convection of an isentropic
vortex over a periodic domain, especially for long-term convection. The double Mach
reflection of a strong shock is solved to validate the schemes for a two-dimensional
flow with strong discontinuities. Finally, the interaction of a shock wave with an isen-
tropic vortex is simulated since this provides a flow with discontinuous and smooth
structures.

6.1. Entropy wave advection. The problem simulates the advection of a den-
sity wave at a constant freestream velocity while pressure and velocity remain con-
stant. The solution at any time is given by

(6.1) ρ(x, t) = ρ∞ +A sin[π(x− u∞t)]; u(x, t) = u∞; p(x, t) = p∞.

The freestream conditions are taken as ρ∞ = u∞ = p∞ = 1, and the amplitude of the
density wave is taken as A = 0.1. The domain is [0, 2] and discretized with a uniform
grid. Periodic boundary conditions are enforced at both boundaries. The solution is
obtained after one cycle at t = 2 and the errors calculated.

The problem is solved using the WENO5, CRWENO5, and CRWENO5-LD
schemes. Figure 6.1(a) shows the L2 norm of the error as a function of grid size for
the three schemes and their optimal counterparts using the conserved variable recon-
struction. An initial grid of 15 points is refined successively and the CFL (for the grid
of 15 points) is 0.1. The compact schemes show significantly lower error for the same
order of convergence. Figure 6.1(b) compares the errors for the conserved and char-
acteristic variables reconstructions for the WENO5, CRWENO5, and CRWENO5-LD
schemes. It is observed that for a smooth problem, the two reconstructions give iden-
tical solutions (it should be noted here that this flow problem reduces the nonlinear
Euler equations to a linear advection equation for the density). Tables 6.1 and 6.2



COMPACT RECONSTRUCTION WEIGHTED ENO SCHEMES A1697

Fig. 6.1. L2 error norm vs. grid size of entropy wave advection.

Table 6.1

L2 errors and convergence rates for Explicit5, Implicit5, and Implicit5-LD for entropy wave
advection.

Explicit5 Implicit5 Implicit5-LD
N Error rc Error rc Error rc
15 9.293E-05 - 1.483E-05 - 1.141E-05 -
30 2.967E-06 4.97 3.877E-07 5.26 2.717E-07 5.39
60 9.321E-08 4.99 1.083E-08 5.16 6.854E-09 5.31
120 2.916E-09 5.00 3.172E-10 5.09 1.843E-10 5.22
240 9.097E-11 5.00 9.598E-12 5.05 5.472E-12 5.07

Table 6.2

L2 errors and convergence rates for WENO5, CRWENO5, and CRWENO5-LD for entropy
wave advection.

WENO5 CRWENO5 CRWENO5-LD
N Error rc Error rc Error rc
15 1.028E-04 - 1.900E-05 - 1.598E-05 -
30 2.988E-06 5.10 3.946E-07 5.59 2.759E-07 5.86
60 9.325E-08 5.00 1.084E-08 5.19 6.860E-09 5.33
120 2.917E-09 5.00 3.172E-10 5.10 1.843E-10 5.22
240 9.098E-11 5.00 9.599E-12 5.05 5.470E-12 5.07

show the L2 errors (density) and orders of convergence for the three schemes (and
their optimal counterparts) with conserved variable reconstruction. While there are
some irregularities in the errors and convergence orders at very coarse grids (between
the WENO and optimal schemes), the errors are identical as the grids are refined (as
expected for a smooth problem). The errors for the CRWENO5 and CRWENO5-LD
schemes are an order of magnitude lower than the WENO5 scheme. At finer grid
resolutions, the L2 errors for CRWENO5-LD are almost half those of CRWENO5.

The numerical cost of the compact schemes is evaluated for the one-dimensional
Euler equations. Table 6.3 shows the L2 errors and the run-time (in seconds) for the
WENO5, CRWENO5, and CRWENO5-LD schemes at different grid resolutions for
solutions obtained after 10 cycles over the periodic domain. The conserved variable
reconstruction is used. The CFL corresponding to the initial grid of 30 points is
0.1 and is reduced for finer grids to maintain fifth order accuracy. The observations
are similar to those for the linear advection equation for the conserved variable re-
construction since it is equivalent to three scalar compact reconstructions, involving
the inversion of a tridiagonal matrix. The computational expense of the compact
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Table 6.3

L2 errors and computational run-time (in seconds) for WENO5, CRWENO5, and CRWENO5-
LD for entropy wave advection with conserved variable reconstruction.

WENO5 CRWENO5 CRWENO5-LD
N Error T Error T Error T
30 2.999E-05 1.01 3.823E-06 1.33 2.230E-06 1.62
45 3.967E-06 2.29 - - - -
60 9.359E-07 6.27 1.076E-07 8.29 5.976E-08 10.30
90 1.241E-07 14.37 - - - -
120 2.928E-08 39.13 3.209E-09 51.63 1.733E-09 66.10
180 3.879E-09 90.25 - - - -
240 9.136E-10 258.23 9.723E-11 329.54 5.222E-11 399.04
360 1.204E-10 576.41 - - - -

Fig. 6.2. Numerical cost of different schemes with conserved and characteristic variable recon-
structions.

schemes is higher at the same grid resolution. However, the compact schemes yield
lower errors, and thus comparing the computational cost of solutions which have the
same absolute error, shows that the compact schemes are actually less expensive. The
numerical error of the compact schemes on grids with 30, 60, 120, and 240 points are
comparable to that of the WENO5 scheme on grids with 45, 90, 180, and 360 points,
respectively, while the computational expense is significantly lower. Figure 6.2(a)
shows the L2 error as a function of the numerical cost for the three schemes, and it
is observed that the CRWENO5 and CRWENO5-LD schemes are less expensive than
the WENO5 scheme for solutions with the same error.

Table 6.4 shows the L2 errors and the run-time for the schemes with characteristic-
based reconstruction. The characteristic variables formulation of the compact schemes

Table 6.4

L2 errors and computational run-time (in seconds) for WENO5, CRWENO5, and CRWENO5-
LD for entropy wave advection with characteristic-based reconstruction.

WENO5 CRWENO5 CRWENO5-LD
N Error T Error T Error T
30 2.998E-05 1.24 3.824E-06 5.58 2.229E-06 5.85
45 3.967E-06 2.81 - - - -
60 9.359E-07 7.78 1.076E-07 34.97 5.976E-08 36.57
90 1.241E-07 17.61 - - - -
120 2.928E-08 50.11 3.209E-09 221.75 1.733E-09 233.67
180 3.879E-09 110.92 - - - -
240 9.136E-10 314.19 9.722E-11 1405.66 5.223E-11 1498.15
360 1.204E-10 702.10 - - - -
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requires the inversion of a block tridiagonal matrix, and thus the computational ex-
pense is significantly larger. This is observed in the table where the run-times of the
CRWENO5 and CRWENO5-LD schemes are significantly higher than those of the
WENO5 scheme at the same grid resolution. The numerical cost is compared for
solutions with similar absolute errors which are obtained by the WENO5 scheme on
finer grids with 1.5 times the number of points. The CRWENO5 and CRWENO5-
LD schemes, in their characteristic formulation, are observed to be more expensive
for the same accuracy, and thus less efficient. Figure 6.2(b) shows the L2 error as a
function of the numerical cost for the three schemes with characteristic-based recon-
struction. At the same value of error, the CRWENO5 scheme is more expensive, but
CRWENO5-LD is observed to be as efficient as WENO5.

6.2. Shock entropy wave interaction. The interaction of a shock wave with
a density wave [5] is simulated in this problem. The initial conditions, which consist
of a Mach 3 shock wave interacting with a density wave, are given by [38]

(ρ, u, p) =

(
27

7
,
4
√
35

9
,
31

3

)
if x < −4

=

(
1 +

1

5
sin 5x, 0, 1

)
if x ≥ −4.(6.2)

The domain is taken as [−5, 5] and zero-gradient boundaries are applied at both
boundaries. The solution is obtained at t = 1.8 at a CFL of 0.1. Figure 6.3(a) shows
the density on a grid with 200 points for the WENO5, CRWENO5, and CRWENO5-
LD schemes using a characteristic-based reconstruction. Figure 6.3(b) shows the same
solution, magnified around the postshock high-frequency waves. “Fine Grid Solution”
refers to the solution obtained by the WENO5 scheme on a grid with 2000 points and
is used as the reference solution in absence of an exact one. It is observed that the
compact schemes show significant improvement in resolving the high-frequency waves
while maintaining nonoscillatory behavior across the shock waves. In addition, the
compact schemes show significantly lower smearing for the shock wave. Thus, the
improved performance due to the use of compact interpolations is validated on a
problem with discontinuities as well as high-frequency smooth waves. The charac-
teristic formulation of the compact schemes was shown to be computationally less
efficient in the previous section, and these results are intended to demonstrate the
improved resolution of the new schemes. It is well known that the reconstruction

Fig. 6.3. Interaction of a shock wave with a density wave.
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of conserved or primitive variables yield oscillatory solutions for inviscid flows with
strong discontinuities, and thus a characteristic-based algorithm is necessary.

6.3. Isentropic vortex convection. The convection of an isentropic vortex [6]
with the freestream flow is simulated. In the present study, the domain is [0, 10]×[0, 10]
with freestream flow as ρ∞ = 1, u∞ = 0.5, v∞ = 0, p∞ = 1. A vortex is introduced in
the flow, initially centered at (xc, yc) = (5, 5), specified as

ρ =

[
1− (γ − 1)b2

8γπ2
e1−r2

] 1
γ−1

; p = ργ ,

δu = − b

2π
e

1−r2

2 (y − yc),

δv =
b

2π
e

1−r2

2 (x− yc),(6.3)

where r = ((x−xc)
2+(y− yc)

2)1/2 is the distance from the vortex center and b = 0.5
is the vortex strength. Periodic boundary conditions are applied at all boundaries.
As the solution is evolved in time, the vortex convects over the periodic domain with
a time period of Tp = 20.

The behavior of the schemes for long-term convection of the vortex is assessed for a
convection distance of 1000 core radii. Figures 6.4(a)–6.4(d) show the density contours
for the initial vortex and the solutions obtained by the WENO5, CRWENO5, and
CRWENO5-LD schemes on a 60× 60 grid. The conserved variables are reconstructed
since the problem is smooth and lacks any discontinuities. The compact schemes show
significant improvement in preserving the vortex shape and strength as it convects
over large distances. Figure 6.4(e) shows the absolute error (nondimensionalized)
in minimum pressure at the vortex core as it convects, for the three schemes. The
low numerical dissipation in the compact schemes results in maintaining the density
minimum at the vortex core, as compared to the WENO5 scheme. The cross-sectional
pressure profiles through the vortex, core are shown in Figure 6.4(f). The compact
schemes are observed to retain the original shape and strength of the vortex, while
the solution obtained using WENO5 shows substantial dissipation and distortion.

The computational expense of the compact schemes is studied for this two-
dimensional problem. The legend of Figure 6.4(e) shows the run-time (in seconds)
per time period Tp of the three schemes. The error in pressure and the cross-sectional
pressure profile for the WENO5 scheme on a 90× 90 grid is also included for compar-
ison in Figures 6.4(e) and 6.4(f), respectively. The compact schemes are costlier than
the WENO5 scheme at the same grid size. However, their resolution of the solution is
comparable to the WENO5 scheme on the finer grid, and they are substantially less
expensive when solutions with similar resolution are compared. These observations
are consistent with those for the linear advection equation and the one-dimensional
entropy wave advection case; however, the reduction in computational expense is
amplified for the two-dimensional problem. The CRWENO5 and CRWENO5-LD
schemes on a 60 × 60 grid resolve the vortex to the same accuracy as the WENO5
scheme on a 90× 90 grid at less than half the run-time.

6.4. Double mach reflection of a strong shock. The reflection of a strong
shock from an inviscid wall [43] is simulated in this problem and provides a validation
of the algorithm for a problem with wave reflection at solid boundaries. The domain
is [0, 4]× [0, 1] and the initial condition consists of a Mach 10 shock intersecting the
bottom boundary y = 0 at x = 1

6 and making an angle of 60◦ to the x-axis. The flow
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Fig. 6.4. Density contours after traveling 1000 core radii and vortex core pressure with different
schemes on a 60× 60 grid.

to the right of the shock is initialized as (ρ, u, v, p) = (1.4, 0, 0, 1), while postshock
flow conditions are specified to the left. The right and left boundaries are set to the
pre- and postshocked flow values. At the bottom boundary, inviscid wall boundary
conditions are imposed on 1

6 < x < 4, while postshock flow conditions are applied for
x < 1

6 . Boundary conditions on the top boundary correspond to the exact motion of
a Mach 10 shock.
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Fig. 6.5. Density contours of the double Mach reflection problem with different schemes.

Fig. 6.6. Entropy contours of the double Mach reflection problem with different schemes.
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The problem is solved on a uniform grid with 240× 60 and 480× 120 points with
CFL values of 0.6 and 0.1, respectively. Characteristic reconstruction is used since
the flow is composed of strong incident and reflected shocks. Figure 6.5 shows the
density contours obtained by the WENO5, CRWENO5, and CRWENO5-LD schemes
at t = 0.2. The figures on the left-hand side show the solutions obtained on the
coarse grid, while the figures on the right show the solutions obtained on a fine grid.
Thirty contours are plotted from 1.731 to 20.92 for all three solutions. It is observed
that the shocks and the Mach stems are well captured at our grid resolutions with
all three schemes and compare well with the solutions presented in the literature
[8, 9], including those obtained with finer grids. The solutions obtained using the
CRWENO5 and CRWENO5-LD schemes show more oscillations due to the reduced
dissipation. However, the shocks are visibly less smeared with the compact schemes.
Figure 6.6 shows the entropy contours for the solutions obtained on the fine grid. The
compact schemes show an improved resolution of the contact discontinuity roll-up
at the base of the Mach stem. The solution obtained with the WENO5 scheme on
a 720 × 180 grid is shown for comparison. It is observed that the resolution of the
solution obtained by the CRWENO5 and CRWENO5-LD schemes on the 480 × 120
grid is comparable to that of the WENO5 solution on the finer grid. The resolution of
our fifth order compact schemes is comparable to that of the ninth order MPWENO
of Balsara and Shu [9] (see Figure 7(b) on page 445).

7. Conclusion. A class of compact-reconstruction WENO (CRWENO) schemes
is presented in this paper. Our objective is to increase the accuracy and spectral prop-
erties of the WENO schemes of Jiang and Shu for a given order of convergence. At
each interface, lower order candidate compact stencils are identified and optimal co-
efficients are found such that a weighted combination of these stencils yields a higher
order compact stencil. The optimal weights are modified based on the smoothness of
the corresponding stencil such that the final compact scheme is high order accurate in
smooth regions of the solution and maintain nonoscillatory behavior at or near discon-
tinuities. A low-dissipation variant of the CRWENO scheme is also presented where
an additional point is included in the stencil to reduce dissipation, while maintaining
the upwind nature of the reconstruction. The new schemes have lower Taylor series
errors and higher bandwidth resolving efficiencies for the same order of convergence.

The new schemes are validated and their performance is analyzed for scalar con-
servation laws. The accuracy and resolution of the new schemes are shown to be
superior to the WENO schemes for both smooth and discontinuous solutions. A
tridiagonal matrix inversion is required at each iteration because the implicit system
resulting from our compact schemes is solution-dependent. This introduces a signifi-
cant computational overhead. However, it is shown through numerical tests that the
improved accuracy of the schemes allows the use of coarser meshes to achieve the same
resolution of the solution as the correspondingWENO scheme. Thus, the new schemes
are computationally more efficient than the WENO schemes of Jiang and Shu.

The compact schemes are extended to the Euler equations of fluid dynamics. It
is well known that while the reconstruction of conserved variables suffices for smooth
flows, a characteristic-based reconstruction is necessary to yield nonoscillatory results
for flows with strong discontinuities. Our schemes extend trivially to the reconstruc-
tion of conserved variables, and our observations for the scalar conservation laws are
reiterated for the Euler system with smooth solutions. The increase in computational
efficiency is amplified in two dimensions. The computational overhead of a tridiagonal
matrix inversion is balanced by the significant increase in accuracy and resolution.
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The implementation of our compact schemes in the characteristic space is de-
scribed. The characteristic-based CRWENO schemes are observed to be robust and
yield nonoscillatory solutions for flows with strong discontinuities. The improved
resolution is demonstrated for both the one-dimensional and two-dimensional Euler
equations. However, the reconstruction of characteristic variables with our compact
schemes requires a block tridiagonal inversion at each iteration. A multidimensional
domain requires the block tridiagonal inversion along each grid line of each dimension.
The numerical cost of these operations is significant, and the computational efficiency
of the characteristic formulation is lower than that of the noncompactWENO schemes.
The application of the characteristic-based CRWENO schemes to inviscid flow prob-
lems may be impractical. However, this may not be an impediment to the application
of the schemes to the Navier–Stokes equations and to larger, real-world flow problems.
The fraction of the numerical cost for the reconstruction step is lower for algorithms
used in such applications, that solve viscous, turbulent flows on curvilinear or unstruc-
tured meshes, often with implicit time marching. Thus, the computational overhead
of the CRWENO schemes may not be significant and the higher resolution obtained
may justify the cost.

It is also known that while the characteristic-based reconstruction is necessary
for inviscid flow problems with strong discontinuities, reconstruction of conserved or
primitive variables suffices when physical viscosity is present. The resolution and com-
putational efficiency of the CRWENO schemes with conserved variable reconstruction
has been demonstrated and indicate their suitability for simulating flows with a large
range of length scale (e.g., direct numerical simulation of turbulence) and simulation
of flows involving long-term convection of vortical structures (e.g., rotorcraft wake
flows). The application of the CRWENO schemes to the two- and three-dimensional
Navier–Stokes equations for the simulation of such flows will be discussed in future
studies.
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