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Non-linear compact interpolation schemes, based on the Weighted Essentially Non-
Oscillatory algorithm, are applied to the unsteady Navier-Stokes equations in this paper.
The schemes have been demonstrated to have superior accuracy and spectral properties
compared to non-compact schemes of the same order of convergence. Their performance
has been assessed for scalar conservation laws and the inviscid Euler equations on equally
spaced meshes and it was observed that the compact schemes show sharper resolution
of discontinuities and high-frequency waves as well as lower absolute errors. This paper
presents the application of these schemes to viscous, turbulent 
ows on body-�tted meshes.
The compact reconstruction scheme is incorporated into a high-order accurate Navier-
Stokes 
ow solver and its performance is veri�ed for practical 
ow problems on domains
involving overset and moving mesh systems.

I. Introduction

The Navier-Stokes equations govern the dynamics of a 
uid satisfying the continuum assumption.1 They
can be simpli�ed to the Euler equations2 by assuming zero viscosity and thermal conductivity. The Euler
equations can be used to model the 
ow of high Reynolds number 
ows where viscous e�ects are negligible.
The convective terms in these systems of equations are hyperbolic in nature and thus, the solution is composed
of waves traveling at their characteristic speeds. While the Euler equations admit discontinuous solutions,
solutions to the Navier-Stokes equations may have steep gradients due to viscous shock waves and thin
boundary layers. High order numerical schemes based on polynomial interpolation need solution-dependent
limiting to ensure non-oscillatory solutions. Several such methods have been proposed2 and applied to the
Euler and Navier-Stokes equations.

The Essentially Non-Oscillatory (ENO) schemes were introduced3 which use adaptive stenciling to achieve
non-oscillatory interpolation. At each point where the interpolated solution is desired, the ENO schemes use
the \smoothest" stencil amongst candidate stencils of the desired order. The \smoothness" of a stencil is
measured by the divided di�erences. The ENO schemes were further developed into �nite di�erence forms
and extended to systems of equations.4,5 The Weighted Essentially Non-Oscillatory (WENO) schemes were
introduced6 where a convex combination of candidate stencils are used. A weighted combination of r-th
order candidate stencils is used with weights that are based on the smoothness of the stencil. At smooth
regions of the solution, the weights attain their optimal values such that the combination is a higher order
interpolation scheme. At discontinuities, the weights for the stencils containing the discontinuity approach
zero, resulting in a non-oscillatory interpolation. An improved WENO scheme was presented7 where the
improved smoothness indicators allowed the construction of a (2r � 1)-th order WENO scheme from the
underlying r-th order ENO scheme. Third and �fth order WENO schemes (r = 2; 3) were constructed with
these smoothness indicators and extended to higher orders (r = 4; 5; 6).8 The WENO schemes presented in7

were seen to be sensitive to the value of an arbitrary parameter and did not converge at the optimal order
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for certain cases of smooth solutions. A mapping of the weights was proposed9 where the weights converged
much faster to their optimal values.

Compact schemes were introduced12 which achieve high orders of accuracy with smaller stencils. Compact
schemes have better spectral properties resulting in the improved resolution of high frequency waves compared
to non-compact schemes. The application of compact schemes to hyperbolic partial di�erential equations
requires the enforcement of a limiter to ensure non-oscillatory behavior across discontinuities. Several e�orts
have been made to combine the WENO schemes with compact schemes to achieve high-resolution, non-
oscillatory schemes that are capable of resolving a large range of length scales seen in compressible, turbulent

ows. One such family of schemes are the hybrid Compact-WENO schemes13,14 where a compact scheme
is used to compute the solution at smooth regions of the 
ow and the WENO scheme is used at and near
discontinuities. A smoothness indicator is used to switch between the two schemes. While this results in a
non-oscillatory scheme, a non-compact scheme is used to compute the solution around discontinuities and
thus, the improved spectral properties of the compact scheme are lost due to this coupling. An alternative
family of schemes15{17 used the ENO or WENO schemes to compute a high-order accurate approximation of
the interface 
ux. The �rst derivative of the 
ux at the cell-centers was computed using high-order compact
schemes from the interface 
uxes. The resulting scheme showed only a marginal improvement in the spectral
resolution since the interface 
uxes were computed using a non-compact interpolation.

A new class of non-linear compact schemes were introduced by the authors18 based on the WENO
algorithm of adaptive stenciling. Lower order compact interpolation stencils were identi�ed at each interface
and optimal weights were calculated such that the weighted combination would result in a higher-order
compact interpolation scheme. The WENO weights are computed based on the smoothness of the stencil
such that they approach the optimal weights for smooth solutions and approach zero for stencils containing
discontinuities. The resulting scheme is thus a high-order accurate compact scheme for smooth solutions and
a low-order accurate biased compact scheme at discontinuities. The performance of the resulting Compact-
Reconstruction WENO (CRWENO) schemes was analyzed for the scalar conservation law for smooth as well
as discontinuous solutions. It was observed that the CRWENO schemes showed a signi�cantly lower absolute
error for the same order of convergence. The CRWENO schemes showed reduced smearing of discontinuities
and clipping of extrema, especially for long-term convection. The CRWENO schemes were applied to the
one- and two-dimensional Euler equations on equally spaced grids. The new schemes showed lower absolute
errors for the same order of convergence, compared to the WENO schemes. The improved spectral resolution
and the lower dissipation resulted in the improved preservation of vortical structures and sharper resolution
of high-frequency waves, while yielding non-oscillatory solutions across discontinuities.

The application of the CRWENO scheme to the unsteady Navier-Stokes equations is presented in this
paper. Benchmark 
ow cases for the inviscid Euler equations are presented that demonstrate the improved
numerical properties of the scheme. The sound generation from the interaction of a vortex with a shock wave
is presented as a veri�cation of the algorithm’s ability to accurately capture acoustic waves. The steady,
viscous 
ow around the RAE2822 airfoil is simulated to assess the performance of the CRWENO scheme on
a curvilinear mesh and the results are validated with experimental data.30 The dynamic stall of the SC1095
airfoil in a wind tunnel33 is studied as the domain requires an overset mesh system with relative motion
between the airfoil and wind tunnel grids. Finally, the turbulent 
ow around a pitching-plunging NACA0005
at low Reynolds number is simulated. This case is representative of 
ow around a 
apping-wing-based micro-
air vehicle and our results are compared with previous computational studies.34 The pitching and plunging
motion of the airfoil results in the creation and shedding of vortices from the upper surface. Integrated
quantities like lift and drag are veri�ed and show good agreement with previous results. However, the high
resolution compact scheme, along with a delayed detached eddy turbulence model, is able to capture the
smaller length scales of the 
ow near the airfoil surface as well as acoustic waves generated by the interaction
of shed vortices and the airfoil.

II. Governing Equations

The compressible Navier-Stokes equations1 govern the behavior of a Newtonian 
uid. The conservation
of mass for a di�erential 
uid element can be expressed as

@�

@t
+
@(�ui)
@xi

= 0 (1)
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The momentum conservation equations are

@(�ui)
@t

+
@(�uiuj)
@xj

= � @p

@xi
+
@�ij
@xj

(2)

and the equation for energy conservation is

@e

@t
+
@ui(e+ p)

@xi
=
@(uj�ij)
@xi

+ k
X
i

@T

@xi
(3)

where i; j are indices for the spatial dimensions, � is the density of the 
uid, ui is the component of the
velocity vector along xi, p is the static pressure, e is the internal energy and T is the static temperature. The
coe�cient of thermal conductivity is k and the equation of state relates the internal energy to the pressure
and velocity as

e =
p


 � 1
+

1
2
�uiui (4)

where 
 is the ratio of speci�c heats. The temperature is related to the pressure and density as p = �RT for
a perfect gas where R is the universal gas constant. The viscous stresses are given by

�ij = �[(
@ui
@xj

+
@uj
@xi

)� 2
3
@uk
@xk

�ij ] (5)

where � is the laminar viscosity coe�cient. The inviscid Euler equations can be obtained from the Navier-
Stokes equations by setting the viscous and thermal conductivity terms to zero.

III. Numerical Method

The Navier-Stokes equations form a hyperbolic-parabolic system of partial di�erential equations (PDE)
where the convective 
uxes are hyperbolic in nature while the viscous terms are parabolic. Equations 1-3
can be expressed in the vector form as

@Q
@t

+
@Fi
@xi

=
@Fvi
@xi

(6)

where Q = [� �u e]T is the vector of conserved quantities and F;Fv are the convective and viscous 
uxes
respectively. The system is discretized in space to yield an ordinary di�erential equation in time. Considering
the one-dimensional system, a conservative �nite di�erence discretization of the convective 
ux terms results
in

@Qj

@t
+

1
�x

[H(xj+1=2)�H(xj�1=2)] =
1

�x
�Fv(xj) (7)

where j is the grid index and Qj is the cell-centered value of Q. The numerical approximation to the viscous
terms at the j-th cell is given by �Fv(xj) and H is the numerical 
ux function which is required to exactly
satisfy9

@F
@x

����
x=xj

=
1

�x
[H(xj+1=2)�H(xj�1=2)] (8)

The reconstruction step, outlined in the next section, involves the approximation (at the desired order) of
the numerical 
ux at the cell interfaces (xj+1=2) from the discrete cell-centered values of the 
ux (F(xj)).
The viscous terms are discretized using second order central di�erencing. In our current study, Eq. 7 is
marched in time using the explicit third order Total Variation Diminishing Runge-Kutta (TVDRK3) scheme
or the implicit second order Backward Di�erence Formula (BDF2) with Newton sub-iterations for time
accuracy.19 The linear system resulting from the implicit time marching is solved iteratively using the Lower-
Upper Symmetric Gauss-Seidel (LUSGS) scheme20,21 or the diagonalized ADI scheme.22,23 The governing
equations are modi�ed using the Low Mach Preconditioning Method24 to accelerate the convergence and
prevent oscillatory solutions for low Mach incompressible 
ows. The Spalart-Allmaras model25 is used for
cases where the 
ow is turbulent.
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IV. Reconstruction

The reconstruction step involves the approximation of the interface 
uxes H(xj+1=2) from the discrete
cell-centered 
uxes F(xj) at the desired order. A biased interpolation is required (\upwinding") to respect
the wave nature of the solution to hyperbolic PDEs. In the present section, the left-biased reconstruction of
a scalar quantity using the CRWENO scheme is described and then extended to a vector 
ux (for the Navier-
Stokes equations). Considering Eq. 8 for a scalar 
ux function f(x), the reconstruction of the numerical

ux function h(x) is required at the cell interfaces. An approximate 
ux function f̂(x) � h(x) is computed
from the discrete values of the 
ux function f(xj) such that

@f

@x

����
x=xj

=
hj+1=2 � hj�1=2

�x

=
f̂j+1=2 � f̂j�1=2

�x
+O(�xr) (9)

where r is the desired order of the scheme. Hyperbolic PDEs admit discontinuous solutions and thus, a
high order polynomial interpolation would result in spurious oscillations. The WENO schemes use adaptive
stenciling to yield non-oscillatory (lower order accurate) solution near or across discontinuities while achieving
high order accuracy in smooth regions of the 
ow. This algorithm is applied to compact interpolation stencils
to yield the CRWENO scheme.

At a given interface xj+1=2, an r-th order interpolation has r candidate stencils which contain the j-th
grid cell. The WENO schemes6,7 use a combination of these r-order candidate stencils at an interface to get
a higher order interpolation in smooth regions and a non-oscillatory interpolation near discontinuities. The
general form of the interface 
ux is

f̂j+1=2 =
rX

k=1

!kf̂
k
j+1=2 (10)

where fkj+1=2 is the interpolated 
ux at xj+1=2 using the k-th candidate stencil and !k is the weight of
k-th stencil. Optimal weights ck; k = 1; : : : ; r exist such that !k = ck8k yields a (2r � 1)-th order accurate
interpolation. However, across or near discontinuities, use of the optimal weights would result in an oscillatory
interpolation (from stencils that contain the discontinuity). Thus, the WENO weight of each stencil is
computed by scaling the optimal weight by the \smoothness" of that stencil, i.e.,

�k =
ck

(�k + �)m
(11)

where �k is the smoothness indicator of the k-th stencil and � is a small number to prevent division by
zero. The exponent m is chosen such that the weights for non-smooth stencils approach zero quickly (in the
present study, m = 2 is used for all cases). The weights �k are normalized as

!k =
�kP
k �k

(12)

to ensure convexity.
The weights, de�ned by Jiang and Shu, have been shown to be excessively dissipative and non-optimal

convergence was observed for certain types of smooth solutions. Several modi�cations to the weights have
been proposed in literature. A mapping of the weights has been proposed9 that causes the WENO weights
to converge faster to their optimal values, however, the mapping function adds to the computation cost.
Di�erent formulations for the weights have been presented10,11 which reduce the dissipation and improve
the convergence properties of the WENO schemes.

High order WENO schemes using non-compact interpolation require wide stencils that may lead to loss of
accuracy and oscillatory solutions. In addition, they su�er from poor spectral properties. Thus, the Compact-
Reconstruction WENO schemes were proposed18 where the candidate stencils are compact with implicit
interpolation. There are r candidate compact stencils at an interface for a r-th order interpolation. Optimal
weights exist for each stencil such that their combination yields a (2r � 1)-th order compact interpolation.
Thus, the CRWENO scheme applies the WENO algorithm, given by Eqs. 10-12, to the compact interpolation
stencils. The resulting scheme has lower absolute errors and smaller stencils for the same order of convergence,
as well as higher spectral resolution.
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(a) Dispersion (b) Dissipation

Figure 1. Spectral characteristics of the �rst order, non-compact 5th order, non-compact 9th order and compact 5th
order schemes

The �fth order CRWENO scheme (CRWENO5) is described. The three third order compact interpola-
tions at xj+1=2 are

2
3
f̂1
j�1=2 +

1
3
f̂1
j+1=2 =

1
6

(fj�1 + 5fj) (13)

1
3
f̂2
j�1=2 +

2
3
f̂2
j+1=2 =

1
6

(5fj + fj+1) (14)

2
3
f̂3
j+1=2 +

1
3
f̂3
j+3=2 =

1
6

(fj + 5fj+1) (15)

with optimal weights as c1 = 1=5; c2 = 1=2; c3 = 3=10. The optimal �fth order compact interpolation scheme,
which is the weighted combination of the three third order interpolations, is

3
10
f̂j�1=2 +

6
10
f̂j+1=2 +

1
10
f̂j+3=2 =

1
30
fj�1 +

19
30
fj +

10
30
fj+1 (16)

Figure 1 shows the spectral properties of the compact scheme given by Eq. 16. The �fth order compact
scheme shows a signi�cantly higher resolution than the �fth and ninth non-compact schemes (which are the
optimal equivalents of the �fth order and ninth order WENO schemes) and is able to accurately capture
higher frequencies on the same grid. The dissipation for the �fth order compact scheme is lower than the �fth
order non-compact scheme and comparable to the ninth order non-compact scheme for lower and mid-range
frequencies. At higher frequencies, where aliasing errors are large, the higher dissipation of the compact
scheme �lters out the high-frequency errors.

The WENO weights are computed using the smoothness indicators that are given by

�1 =
13
12

(fj�2 � 2fj�1 + fj)2 +
1
4

(fj�2 � 4fj�1 + 3fj)2 (17)

�2 =
13
12

(fj�1 � 2fj + fj+1)2 +
1
4

(fj�1 � fj+1)2 (18)

�3 =
13
12

(fj � 2fj+1 + fj+2)2 +
1
4

(3fj � 4fj+1 + fj+2)2 (19)

and the weights can thus be computed using Eqs. 11 and 12. The resulting scheme is given by

(
2
3
!1 +

1
3
!2)f̂j�1=2 + (

1
3
!1 +

2
3

(!2 + !3))f̂j+1=2 +
1
3
!3f̂j+3=2

=
!1

6
fj�1 +

5(!1 + !2) + !3

6
fj +

!2 + 5!3

6
fj+1 (20)
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The system of equations represented by Eqs. 20 is tridiagonal and the convexity of weights ensures non-zero
terms on the main diagonal.

Although the Compact-Reconstruction WENO schemes require the solution of a system of equations, the
sparse nature of the system results in a computational cost of O(N) where N is the grid size. It is, therefore,
of the same order as the traditional WENO schemes. Compact interpolations result in a signi�cantly lower
absolute error at the same grid resolution thus justifying the additional computational expense.

IV.A. Extension to the Navier-Stokes Equations

The previous sub-sections describe the application of the CRWENO scheme to a scalar quantity. The numer-
ical solution of the Navier-Stokes equations requires the reconstruction of a vector quantity at the interfaces.
The scalar interpolation techniques can be extended to the system of equations in three possible ways -
interpolation of the primitive, conserved or the characteristic variables. The �rst approach interpolates the
primitive 
ow variables (�, u, p) at each interface from their cell-centered values. Similarly, the second
approach interpolates the conserved quantities (�, �u, e) from their cell-centered values. Thus it can be seen
as applying the scalar reconstruction process separately on each equation of the system. The reconstruc-
tion schemes of the previous sub-sections can be trivially extended to a system of equation for these two
approaches.

The hyperbolic nature of the convective 
uxes implies that the solution is composed of waves propagating
at their characteristic speeds (given by the eigenvalues of the 
ux Jacobian) along their characteristic paths.
The computation of interface 
uxes needs to model this wave behavior by the process of upwinding. For
the one-dimensional system, left and right biased interface 
uxes (F̂Lj+1=2; F̂

R
j+1=2;) are computed at the

interface, where F̂j+1=2 is an approximation of the numerical 
ux function H(xj+1=2). The previous sub-
sections describe left-biased interpolations where the 
ux at the interface x+1=2 is computed using a stencil
centered on the j-th cell. A right-biased interpolation can be obtained by re
ecting the equations across
the interface where the stencil is centered on the (j + 1)-th cell. The Roe 
ux di�erencing26 is used in the
current algorithm to �nd the upwind interface 
ux, which is given by

F̂j+1=2 =
1
2

(F̂Lj+1=2 + F̂Rj+1=2)� 1
2
jÂ(Q̂L

j+1=2; Q̂
R
j+1=2)j(Q̂L

j+1=2 + Q̂R
j+1=2) (21)

where Â is the Roe-averaged Jacobian matrix. Q̂L;R
j+1=2 are the left and right biased reconstructed values of

Q at the interface.
The reconstruction of the characteristic variables using the CRWENO scheme requires the coupled so-

lution of all three components. At interface xi+1=2, the eigenvalues (�ki+1=2), left eigenvectors (lki+1=2) and
right eigenvectors (rki+1=2) are computed from the Roe-averaged state, where k is the index denoting each
characteristic �eld. The k-th characteristic 
ux at the j-th cell is expressed as

�kj = lki+1=2 � F(xj) (22)

The CRWENO5 scheme, given by Eq. 20, is applied to the characteristic 
uxes to yield a block tridiagonal
system of equations, expressed as

a(lk1F̂L1;j�1=2 + lk2F̂
L
2;j�1=2 + lk3F̂

L
3;j�1=2)

+ b(lk1F̂L1;j+1=2 + lk2F̂
L
2;j+1=2 + lk3F̂

L
3;j+1=2) = â�kj�1 + b̂�kj + ĉ�kj+1

+ c(lk1F̂L1;j+3=2 + lk2F̂
L
2;j+3=2 + lk3F̂

L
3;j+3=2) (23)

where lk1; lk2; lk3 are the components of the left eigenvector lkj+1=2 and F̂L1;j+1=2; F̂
L
2;j+1=2; F̂

L
3;j+1=2 are the

components of the 
ux vector F̂Lj+1=2. The right-biased characteristic 
ux, �̂R;k, can be similarly computed
and the Roe-Fixed (RF) formulation5,8 is used to compute the upwind characteristic 
ux from the left and
right biased approximations,

�̂L;kj+1=2 if �j;j+1=2;j+1 > 0

�̂kj+1=2 = �̂R;kj+1=2 if �j;j+1=2;j+1 < 0

1
2

[�̂L;kj+1=2 + �̂R;kj+1=2 + �max(v̂L;kj+1=2 � v̂
R;k
j+1=2)] else (24)
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where �max = max(�j;j+1=2;j+1) and vkj = lki+1=2 �Q(xj) is the characteristic state vector.
The computational expense for the CRWENO scheme has been discussed18 and they have been demon-

strated to be more e�cient than WENO schemes for scalar reconstruction. Although the computational
expense is higher for a given grid resolution, the CRWENO scheme achieves the same accuracy and resolu-
tion on coarser meshes. The characteristic-based reconstruction is signi�cantly more expensive due to a block
tridiagonal inversion and the size of the block increases with the number of dimensions. Numerical solutions
of inviscid 
ows with strong shocks require the characteristic-based reconstruction for robust, non-oscillatory
solutions. However, it is observed in this study that the reconstruction of conserved and primitive variables
yields non-oscillatory solutions for viscous 
ows. Thus, the CRWENO reconstruction of conserved/primitive
variables results in an algorithm with improved spectral resolution and lower numerical cost (for the same
accuracy).

V. Results and Validation

V.A. Inviscid Euler Equations

The order of convergence and the accuracy of the CRWENO5 scheme, compared to those of the WENO5
scheme, is demonstrated by considering a smooth, linear problem. The advection of a density wave is
considered. The solution at any time is given by

�(x; t) = �1 +A sin[�(x� u1t)]
u(x; t) = u1

p(x; t) = p1 (25)

The freestream conditions are taken as �1 = u1 = p1 = 1 and the amplitude of the density wave is taken
as A = 0:1. The domain is [0; 2] and discretized with a uniform grid. Periodic boundary conditions are
enforced at both boundaries. The solution is obtained after one cycle at t = 2 and the errors calculated.

Table 1. L2 Convergence Rates for Entropy Wave Advection

WENO5 CRWENO5
N Error rc Error rc

15 1.028E-04 - 1.900E-05 -
30 2.988E-06 5.10 3.946E-07 5.59
60 9.325E-08 5.00 1.084E-08 5.19
120 2.917E-09 5.00 3.172E-10 5.10
240 9.098E-11 5.00 9.599E-12 5.05

The problem is solved using the WENO5 and CRWENO5 schemes with TVD-RK3 time-stepping. An
initial grid of 15 points is re�ned successively. The initial CFL (for the grid of 15 points) is 0:1 and is reduced
by a factor of 2=(25=3) at each re�nement (since the spatial interpolation is �fth order and time marching is
third order, this ensures that time discretization errors converge at the same rate as the space discretization
ones). Table 1 shows the errors and orders of convergence for the two schemes with conserved variable based
reconstruction. The errors for the CRWENO5 scheme are an order of magnitude lower than the WENO5
scheme, for the same order of convergence.

The initial conditions of the Lax shock tube27 are given by

�L; uL; pL = 0:445; 0:698; 3:528
�R; uR; pR = 0:5; 0; 0:571 (26)

The domain is taken as [0; 2] and the initial discontinuity is located at x = 1. The solution is evolved in
time using the TVD-RK3 time-stepping till t = 0:2 at a CFL of 0:5. Zero-gradient boundary conditions
are applied at both boundaries. Figure 2(a) shows the solutions obtained by the WENO5 and CRWENO5
schemes on a grid with 80 points. Mapping of the WENO weights is used to improve the resolution of the
discontinuities. The exact solutions are obtained by a Riemann solver.2 The compact schemes are seen to be
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non-oscillatory, thus showing that the smoothness indicators of the WENO5 scheme work well with compact
stencils. It can be observed that the shock and the contact discontinuity are signi�cantly less smeared for
the CRWENO5 scheme compared to the WENO5 scheme. This is expected since the compact schemes have
lower dissipation error and better spectral properties than explicit interpolation.

(a) Lax shock tube (b) Shock entropy wave interaction

Figure 2. One-dimensional inviscid 
ow problems

The interaction of a shock wave with a density wave5 is simulated. The initial conditions consist of a
shock wave, which interacts with a density wave to generate a solution consisting of high-frequency smooth
structures as well as discontinuities. The density 
uctuations are ampli�ed as they pass through the shock.
Thus, the problem is a good test to assess the non-oscillatory behavior of the scheme while resolving high-
frequency smooth waves. In the present study, the initial conditions consist of a Mach 3 shock and a density
wave9 and are given by

(�; u; p) = (
27
7
;

4
p

35
9

;
31
3

) if x < �4

= (1 +
1
5

sin 5x; 0; 1) if x � �4 (27)

The domain is taken as [�5; 5] and zero-gradient boundaries are applied at both boundaries. The solution is
obtained at t = 1:8 at a CFL of 0:1. The TVD-RK3 time-stepping is used. Figure 2(b) shows the density on
a grid with 200 points for the WENO5 and CRWENO5 schemes using a characteristic-based reconstruction,
magni�ed around the post-shock high-frequency waves. Mapping of the WENO weights is used for both the
WENO5 and CRWENO5 schemes to improve the resolution of the solution. The \Fine Grid Solution" refers
to the solution obtained by the WENO5 scheme on a grid with 2000 points and is used as the reference
solution in absence of an exact one. The CRWENO5 scheme yields solutions with sharper resolution of the
high-frequency waves and non-oscillatory behavior across discontinuities. This demonstrates the ability of
the compact schemes to non-oscillatory solutions with higher resolution and lower dissipation, compared to
the traditional WENO schemes.

V.B. Isentropic Vortex Convection

The long-term, inviscid convection of an isentropic vortex28 is solved and the CRWENO5 scheme is compared
with the WENO5 scheme. The domain is [0; 10]� [0; 10] and the freestream 
ow is �1 = 1; u1 = 0:5; v1 =
0; p1 = 1. The vortex, initially centered at (xc; yc) = (5; 5), is speci�ed as,

� =
�
1� (
 � 1)b2

8
�2
e1�r

2
� 1

�1

; p = �


�u = � b

2�
e

1�r2
2 (y � yc)

�v =
b

2�
e

1�r2
2 (x� yc) (28)
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where r = ((x�xc)2 + (y�yc)2)1=2 is the distance from the vortex center and b = 0:5 is the vortex strength.
All boundaries are periodic and the time period is Tp = 20.

(a) WENO5 (b) CRWENO5

(c) Absolute error in minimum pressure

Figure 3. Density contours and vortex core pressure error for convection over 1000 core radii

Figures 3(a) and 3(b) show the density contours for the solutions on a 60�60 grid and CFL number of 0:5.
The solutions are obtained using the WENO5 and CRWENO5 schemes with TVD-RK3 time-stepping. A
signi�cant improvement is observed with the CRWENO5 scheme in preserving the vortex shape and strength
for long-term convection. The absolute error (non-dimensionalized) in minimum pressure at the vortex core
is shown in �gure 3(c) and the CRWENO5 yields a solution with lower error than the WENO5 scheme.

V.C. Sound Generation from Shock Vortex Interaction

The sound generation from the interaction of a planar shock wave with a vortex is simulated to verify
the ability of the algorithm to accurately capture acoustic signals. The nature of the interaction and the
resulting acoustics depend on the strengths of the shock wave as well as the vortex. The \strong" interaction
is characterized by a multi-stage process, where the primary collision of the vortex with the shock wave is
su�ciently strong to produce secondary shock structures that subsequently interact with the vortex. In this
study, a strong interaction is simulated which results in the generation of three sounds.

A large domain ([�70; 10] � [�40; 40]) is taken such that the sound waves do not reach the boundaries
within the duration of interest. The initial conditions consist of a stationary Mach 1:2 shock at x = 0
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Figure 4. Pressure contours for the interaction of a stationary shock with a vortex

with the 
ow going from right to left. The right (x = 10) boundary is supersonic in
ow while post-shock

ow conditions are maintained at the left (x = �70) boundary. The top (y = 40) and bottom (y = �40)
boundaries are periodic. An isentropic vortex is initialized at (xc = 4; yc = 0) for which the density and
velocity is given by

� =
�

1� 1
2

(
 � 1)M2
v e

1�r2
� 1

�1

�u = �Mve
1
2 (1�r2)(y � yc)

�v = Mve
1
2 (1�r2)(x� xc) (29)

The vortex strength Mv is taken as 1:0. The simulation time is non-dimensionalized by the vortex core
radius and the speed of sound upstream of the shock and the simulation is run till a non-dimensional time
of 16. The Reynolds number is taken as 800.

Figure 4 shows the pressure contours for this 
ow. The solution is obtained on a 640 � 640 uniform
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(a) Azimuthal - Precursor (r=R = 16:0), 2nd Sound
(r=R = 12:0), 3rd Sound (r=R = 6:7)

(b) Radial

Figure 5. Sound pressure at t = 16

Figure 6. Vorticity at vortex core vs. time

grid with CRWENO5 scheme and TVD-RK3 time-stepping. The time step size dt is taken as 0:005. The
initial impact of the vortex with the shock results in shock deformation and regions of compression and
rarefaction are formed, as seen in the third �gure. As the vortex passes through the shock, the compression
and rarefaction regions grow and two more such regions are formed (as seen in the �fth and sixth �gures)
to form an alternating compression-rarefaction 
ow pattern. Thus, the primary interaction of the vortex
with the shock wave results in the emission of a quadrupolar sound wave, referred to as the precursor. The
shock deformation caused by the vortex causes the creation of curved shock stems above the vortex that are
visible in the subsequent �gures. The interaction of the vortex with these secondary shock structures causes
the emission of two more sound waves, each of which are quadrupolar in nature and out of phase with each
other.

Figure 5 shows the radial and azimuthal sound pressure (�P ) around the vortex at t = 16. The sound
pressure is de�ned as the di�erence between the actual pressure and the post-shock pressure, normalized by
the post-shock pressure. The radial sound pressure variation is shown for a line extending from the center
of the vortex at an angle of 45o (clockwise) from the negative x-axis. Our results are veri�ed with previous
computational studies29 which were obtained using the �fth order WENO scheme and a good agreement is
observed. Figure 5(b) shows the three sounds that are generated - precursor, second and third sounds. The
pressure peak observed between the precursor and the second sound is the secondary shock stem.

The evolution of the vorticity magnitude at the vortex core is shown in �gure 6. Our results with
the CRWENO5 scheme on a 640 � 640 grid are compared with those obtained by Zhang, et. al.29 on
a clustered grid with a comparable resolution. In addition, results obtained using the �fth order WENO
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scheme (WENO5) is shown for two grid resolutions - 640� 640 and 1050� 1050. The �rst peak, at t = 3:5,
is due to interaction of the vortex with the primary shock wave, while a subsequent increase in vorticity
is seen around t = 8 due to the interaction with the secondary shock stems. While a good agreement is
seen between the di�erent results, the CRWENO5 scheme shows a signi�cant improvement in capturing the
primary and secondary interactions of the vortex with the shocks, compared to the WENO5 scheme at the
same grid resolution. The results obtained by the CRWENO5 scheme on the 640 � 640 grid compare well
with those obtained by the WENO5 scheme on the 1050� 1050 grid.

V.D. Steady Flow around RAE2822 Airfoil

The algorithm is validated for 
ows involving curvilinear meshes by solving the steady, turbulent 
ow around
the RAE2822 airfoil. The computational results are validated with experimental data available in the
literature.30 The domain is discretized by a body-�tted 521� 171 C-type mesh with the outer boundary 50
chord-lengths away. Experimental data is available for a Reynolds number of 6:5 million with the airfoil at
2:92o angle of attack and the freestream Mach number as 0:725.30 The experiment was carried out inside a
wind tunnel and the 
ow conditions for the two-dimensional computational study are corrected to an angle
of attack of 2:51o and a freestream Mach number of 0:731.31

Figure 7. Flow�eld and pressure distribution around the RAE2822 airfoil

(a) x=c = 0:319 (b) x=c = 1:025

Figure 8. Velocity pro�les in boundary layer and wake for the RAE2822 airfoil

The solution is obtained using the CRWENO5 scheme and BDF2 time-stepping. Figure 7(a) shows
the pressure distribution and the streamlines for the 
ow. The surface pressure coe�cient distribution is
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Figure 9. Convergence history for the CRWENO5 and WENO5 schemes

shown in �gure 7(b) and validated with experimental data.30 The velocity pro�les in the boundary layer
and the wake are shown in �gure 8 at chord-wise stations 0:319c and 1:025c respectively. A good agreement
is observed with the experimental data for the surface pressure and the velocity pro�les. The convergence
histories of the CRWENO5 and WENO5 schemes are shown in �gure 9 and both these schemes show a
residual drop of only one-and-a-half orders of magnitude. A component-wise reconstruction is used in the
present study, along with the WENO weights as formulated by Jiang and Shu. The convergence of the
WENO schemes for airfoil problems has been studied32 and non-characteristic formulations were observed
to show poor convergence. Although the current results agree well with experimental data, the authors are
currently investigating the improvement of convergence behavior for the CRWENO5 scheme.

Figure 10. Overset airfoil and wind tunnel meshes for SC1095 dynamic stall case

V.E. Dynamic Stall of SC1095 Airfoil

The numerical solution of 
ows on a domain with overset meshes requires the determination of regions of
overlap, where the solution is transferred between the meshes, along with blanked out regions inside of
physical bodies as well as to minimize the region of overlap. The solution update procedure is such that
at a given instant in time, the solution update at a blanked out point is zero. This may create a locally
unphysical solution; but as it does not in
uence interior �eld points (since it is separated by points that
use interpolated data) it does not contaminate the solution �eld. In addition, if a blanked point becomes a
�eld point at a future point in time, there will always be a transition period where the data will be updated
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(a) Pressure (b) Vorticity

Figure 11. Comparison of pressure and vorticity contours for di�erent schemes - MUSCL3 (green), WENO5 (red) and
CRWENO5 (blue)

Figure 12. Lift coe�cient vs. angle of attack - Validation with experimental results

using interpolated data from another mesh. A compact scheme results in a coupling of the interpolated
interface 
uxes with neighboring 
uxes and therefore, the treatment of the 
uxes in the blanked out region
is important. For the current WENO-based compact scheme, it is expected that the non-smooth solution
across the blanked out region will result in the adaptive stenciling of the CRWENO scheme biasing away
from the blanked out region (since it is similar to a discontinuity) and result in a decoupling of the blanked
out region from the �eld and interpolated points. Thus, the CRWENO scheme should produce smooth
solutions across the overlap region, similar to non-compact schemes.

The dynamic stall of a SC1095 airfoil in a wind tunnel is simulated using the CRWENO5 scheme and
the results are veri�ed with those obtained using non-compact schemes like the third order MUSCL scheme
(MUSCL3) and the �fth order WENO scheme (WENO5). The second order Backward Di�erencing (BDF2)
is used to march the solution in time with 15 Newton sub-iterations for time accuracy. The wind tunnel
height is taken as 5c where c is the airfoil chord. A 365� 138 C-mesh is used for the airfoil while a 151� 101
Cartesian mesh, that is clustered near the airfoil, is used for the wind tunnel. Figure 10 shows the overset
domain and the mesh around the airfoil.

The simulation is run at a Reynolds number of 3:92 million and a freestream Mach number of 0:302. The
mean angle of attack is 9:78o and the pitching amplitude is 9:9o with a reduced frequency of 0:099. A time
step of dt = 0:01 is taken which results in 10500 iterations per cycle. The simulation is run for four complete
cycles and the solutions from the last cycle are compared. Figure 11 compares the pressure and vorticity
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(a) CRWENO5 (b) WENO5

(c) CRWENO5 (d) WENO5

Figure 13. Comparison of pressure contours at 18:83o angle of attack for the overlap region - airfoil mesh (red) and
wind tunnel mesh (blue)

contours for the MUSCL3, WENO5 and CRWENO5 schemes. The solutions are obtained at 18:94o angle of
attack (upstroke). The �gure shows the leading edge vortex after it has detached from the leading edge and
has started convecting downstream. The solution obtained using the CRWENO5 scheme agrees with those
obtained using the non-compact schemes. The coe�cient of lift as a function of the angle of attack is shown
for one complete cycle in �gure 12. The numerical results are compared with experimental data33 and a good
agreement is seen. Figures 13(a) and 13(b) show the pressure contours for the 
ow when the airfoil is at
18:83o angle of attack (upstroke). The solutions for the compact scheme and non-compact WENO5 scheme
are shown. The vortices shed from the upper surface are transferred from the airfoil mesh to the wind tunnel
mesh as they convect downstream. A magni�ed view of the overlap region between the two meshes for the
two schemes is shown in �gures 13(c) and 13(d). The contours on the airfoil and wind tunnel meshes agree
with each other in the overlap region and are continuous across the mesh boundary. Thus, the applicability
of the compact scheme is veri�ed for overset meshes requiring transfer of 
ow data between domains.

V.F. Flow around Pitching-Plunging NACA0005 Airfoil

Flow around a pitching-plunging airfoil at low Reynolds number is representative of the 
ow�eld around
a 
apping-wing-based micro-air vehicle and has been previously studied using experimental and numerical
techniques.34 The combined pitching and plunging motion results in positive thrust (negative drag) when
averaged over one cycle. Previous computational studies used Reynolds-Averaged Navier-Stokes (RANS)
based algorithms with second order spatial accuracies. In the present study, an attempt is made to capture the
�ner details of the 
ow�eld near the airfoil surface. The one-equation Spalart-Allmaras turbulence model25
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Figure 14. Pressure distribution over one time period
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(a) Lift (b) Drag

Figure 15. Integrated forces over one time period

(a) MUSCL3 (b) WENO5 (c) CRWENO5

Figure 16. Pressure distribution for di�erent schemes at t=T = 0:75 (Upstroke)

(a) MUSCL3 (b) WENO5 (c) CRWENO5

Figure 17. Numerical shadowgraph for di�erent schemes at t=T = 0:75 (Upstroke)

is used with the Delayed-Detached Eddy Simulation (DDES) modi�cation in its two-dimensional form to
resolve coherent vortical structures. The �fth order CRWENO scheme is used for spatial reconstruction,
along with the third order MUSCL and �fth order WENO schemes.

The domain is discretized using a 391� 161 C-type mesh. A freestream Mach number of 0:1 is speci�ed
and the Reynolds number is 15000. The pitching motion is speci�ed by a pitch amplitude of 40o around
a zero mean angle of attack and a reduced frequency of 0:795. The plunging motion has an amplitude of
1:0 and the same reduced frequency. The plunging motion is �=2 behind in phase than the pitching motion
and the airfoil pitches around the leading edge. The simulation is run over four cycles and the results from
the �nal cycle are presented. Figure 14 shows the pressure distribution around the airfoil over one complete
cycle. The solutions are obtained using the CRWENO5 scheme. As the airfoil plunges downwards, leading
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(a) MUSCL3 (b) WENO5 (c) CRWENO5

Figure 18. Vorticity distribution for di�erent schemes at t=T = 0:40 (Downstroke)

edge vortices are formed on the upper surface that grow in size and then detach from the surface. This results
in a positive lift during the downstroke. Similarly, vortices form and shed from the lower surface during the
upstroke resulting in negative lift. Both strokes result in negative drag and the 
apping motion causes the
generation of positive thrust. The lift and drag variation over one cycle is shown in �gure 15. Results from
the CRWENO5, WENO5 and the MUSCL3 schemes are veri�ed with the previous computational results34

where the 
ow was solved using an incompressible, RANS-based algorithm with second order accuracy in
time and space. The integrated forces agree well with the previous results.

The pressure and the numerical shadowgraph (r2�) for the solution at t=T = 0:75 are shown in �gures
16 and 17. Acoustic waves are observed that result from the interaction of the shed vortices with the airfoil.
The CRWENO5 scheme is compared with the MUSCL3 and WENO5 schemes and all three solutions use
the two-dimensional DDES turbulence model. The CRWENO5 scheme shows a signi�cant improvement
in the resolution of the acoustic waves, compared to the WENO scheme of the same order of accuracy.
Although the vortex is accurately captured by the WENO5 and CRWENO, as seen by the pressure (or
density, which is not shown here), oscillations are seen in the second derivative of the density (as seen by the
shadowgraph). This is due to the choice of the weights for the non-linear limiting of the WENO algorithm
and the improvement of this behavior is a subject of current research.

Figure 18 shows out-of-plane vorticity at t=T = 0:4 for the three schemes. It is observed that the
CRWENO5 scheme is able to resolve the di�erent vortices that form and detach from the airfoil surface.
A comparison of the three schemes show that while a second or third order scheme is su�cient to predict
the integrated forces like the lift and drag, a higher order scheme is necessary to capture the 
ow features
near the airfoil surface as well as acoustic waves generated from the pitching-plunging motion. Although the
CRWENO5 and WENO5 schemes are both �fth order accurate, the increased spectral resolution capabilities
of the compact scheme yields a solution with higher resolution of the 
ow features than the non-compact
scheme.

VI. Conclusions

A new class of high order accurate non-oscillatory schemes with high spectral resolution has been pre-
viously introduced by the authors. The CRWENO scheme is based on applying the WENO algorithm of
solution-dependent adaptive stenciling to compact interpolation schemes. At each interface, lower-order
compact interpolation stencils are identi�ed and combined using WENO weights. The weighted combina-
tion results in a higher-order compact scheme at smooth regions of the solution and a non-oscillatory biased
compact scheme across discontinuities. The performance of the new scheme, in terms of accuracy, conver-
gence and resolution, has been analyzed for the scalar conservation law and the inviscid Euler equations,
and compared to that of the WENO schemes of Jiang and Shu. The CRWENO scheme yielded solutions
with lower absolute errors for smooth problems, when compared with the WENO scheme of the same order
of convergence, thus being computationally more e�cient. The higher resolution and lower dissipation of
the CRWENO scheme also resulted in reduced smearing of discontinuities and improved preservation of
waveforms for long-term convection.

The present paper demonstrates the application of the CRWENO scheme to the Navier-Stokes equations
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to simulate viscous, turbulent 
ows representative of practical problems. The order of convergence and the
accuracy of the new scheme is demonstrated by solving the linear advection of a density wave. Two canonical
test cases, the Lax shock tube and the Shu-Osher test case, are presented to demonstrate the improved
spectral resolution and reduced dissipation of the CRWENO scheme, for problems containing discontinuities
as well as high-frequency waves. The inviscid convection of an isentropic vortex is solved and the CRWENO
scheme shows a signi�cant improvement in preserving the vortex strength and shape over large convection
times. The sound generation from the interaction of a shock wave with a vortex is simulated and the results
obtained are veri�ed with previous computational studies. An improvement is seen in the capturing of the
shock-vortex interaction using the CRWENO scheme, which yielded solutions comparable to the WENO
scheme on a �ner mesh. The algorithm is validated for the steady 
ow around the RAE2822 airfoil where
the domain is discretized by a curvilinear C-type mesh. The surface pressure coe�cient and the boundary
layer and wake velocity pro�les are compared with experimental data and a good agreement is observed.
The dynamic stall of the SC1095 airfoil is simulated to verify the algorithm for a domain composed of an
overset mesh system with relative grid motion. Results from the compact scheme are veri�ed with those from
non-compact schemes. The results are also validated against experimental data. Finally, the 
ow around a
pitching-plunging airfoil at low Reynolds number is simulated, as it is representative of the 
ow around a

apping-wing-based micro-air vehicle. Our results are compared with previous computational studies with
second and third order spatial accuracy. Although lower order schemes are su�cient for accurate prediction
of integrated forces, the higher order CRWENO scheme is able to resolve the small-scale 
ow structures near
the airfoil surface, as well as the acoustic waves generated by the interaction of shed vortices with the airfoil.

Steady and unsteady 
ows around airfoils are simulated using the Jiang and Shu formulation of the
WENO weights as well as a component-wise reconstruction of the 
ux vector in the present study. One
of the drawbacks is the poor convergence of the CRWENO (and WENO) scheme for the steady, turbulent

ow around an airfoil. Although the pressure distribution as well as the velocity pro�les agreed with the
experimental results, the residual dropped only an order of magnitude. The improvement of convergence of
the CRWENO scheme with alternative formulations of the WENO weights is currently being investigated.
The current formulation of the CRWENO scheme also causes oscillations in the higher derivatives of the
solution, although the solution itself may be smooth and non-oscillatory. This is observed in the vortices shed
from the pitching and plunging airfoil. Although the pressure and density distribution around the vortex is
smooth, the numerical shadowgraph is oscillatory indicating lack of monotonicity in the second derivatives.
These oscillations are sensitive to the smoothness indicators and the value of � in the WENO weights and
their alleviation is an area of active research.
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