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Executive Summary

Solutions to hyperbolic conservation laws are often characterized by a large range of length scales as well
as discontinuities. Standard nonlinear finite-difference schemes, such as the WENO schemes, yield non-
oscillatory solutions but lack the spectral resolution required to model the relevant length scales. Linear
compact schemes have a high spectral resolution; however, they suffer from spurious oscillations across
discontinuities and sharp gradients. Weighted nonlinear compact schemes, such as the CRWENO scheme and
the hybrid compact-WENO schemes, combine the non-oscillatory nature of the WENO schemes with the high
spectral resolution of the compact schemes and are thus ideal for solutions with multiple length scales and
discontinuities. One example of an application area is compressible, turbulent flows. The CRWENO scheme
and the hybrid compact-WENO schemes have a nonlinear, solution-dependent left-hand side and therefore
require the solution of banded systems of equations at each time-integration step or stage. Application of
these schemes to multiprocessor simulations requires an efficient, scalable algorithm for the solution to the
banded systems. Past efforts at implementing nonlinear compact schemes for parallel simulations suffer from
one or more of the following drawbacks: parallelization-induced approximations and errors, complicated
and inefficient scheduling of communication and computation, significant increase in the mathematical
complexity of the banded systems solver, and high communication overhead. Therefore, these algorithms do
not scale well for massively parallel simulations and are inefficient compared with the corresponding standard
finite-difference schemes.

In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the
fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by
implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an
iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy
to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with
few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori
instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm
thus involves only point-to-point communication between neighboring processors. Our implementation of the
tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no
parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it
involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on
a single processor, and it does not require any communication and computation scheduling.

We analyze the performance of the fifth-order CRWENO scheme with this parallel tridiagonal solver
and compare its computational efficiency on multiple processors with that of the WENO scheme. The Euler
equations governing inviscid, compressible flows are solved in one, two, and three spatial dimensions and we
consider two types of test problems—the advection of a smooth sinusoidal density waves and the advection
of density fluctuations comprising all grid-supported wavelengths. We demonstrate that in one and two
spatial dimensions, there exists a critical subdomain size above which the compact schemes are more efficient
(for smaller subdomains, i.e., larger number of processors, the WENO scheme is more efficient). In three
spatial dimensions, however, the compact schemes are more efficient for the entire range of parallelization.
We consider two benchmark physically-relevant flow problems—long-term convection of an isentropic vortex
and the decay of isotropic turbulent—and evaluate the strong and weak scalability of our algorithm on up
to ∼ 500, 000 processors. We show that the fifth-order CRWENO scheme retains its higher computational
efficiency compared with that of the WENO scheme, for the smallest subdomain sizes possible.
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1 Introduction

Hyperbolic conservation laws govern the dynamics of several physical applications that involve convection
or wave propagation [44]. The governing equations express the conservation of a quantity by equating the
time derivative of that quantity inside a control volume to its spatial flux through the boundaries. Examples
of such systems include compressible fluid dynamics, ideal magnetohydrodynamics, and electromagnetics.
Linear hyperbolic partial differential equations (PDEs) admit discontinuities in their solution if the initial
or boundary conditions have discontinuities, while for nonlinear hyperbolic PDEs, discontinuities may form
from smooth initial and boundary conditions. Numerical methods for the solution of such equations need
to yield non-oscillatory solutions across discontinuities while maintaining high-order accuracy for smooth
solutions. Several methods have been proposed in the literature [39, 44], including the first-order schemes
of Godunov [30] and Roe [54] and second-order schemes such as the MUSCL scheme [67], Harten’s TVD
scheme [33], and the piecewise parabolic method [15].

The essentially non-oscillatory (ENO) schemes [34] use an adaptive stenciling procedure to achieve high-
order accuracy for smooth solutions and avoid oscillations across discontinuities. The interpolation stencil
with the smoothest data (as measured by divided differences) is selected from among the candidate stencils
to compute the final interface flux, thus avoiding stencils that contain discontinuities. The implementation of
the ENO schemes was further improved [60,61] for conservative finite-difference and finite-volume schemes
and applied to several practical applications. The weighted ENO (WENO) schemes were introduced [45] as
an improvement where the final interface flux is calculated by using a weighted combination of the candidate
stencils. The weights are functions of the solution smoothness and approach zero for stencils containing
discontinuities. Away from discontinuities, the weights approach their optimal values, and a higher-order
accurate interpolation of the interface flux is obtained. The implementation of the WENO schemes were
improved [37], and very high-order accurate WENO schemes were constructed [8]. The original formulation of
the solution-dependent weights was observed to be excessively dissipative and result in suboptimal convergence
for some classes of smooth problems, and alternative nonlinear weights were proposed [10,12,35,72,73]. These
formulations led to significant improvements in the behavior of the WENO schemes. The WENO schemes
have been successfully applied to several applications [59].

Solutions to hyperbolic conservation laws are often characterized by a large range of length scales. One
example is compressible turbulent flow where the length scales range from the characteristic scale of the flow
to that of the turbulent flow structures. Numerical algorithms for such applications need a high spectral
resolution to accurately model all the relevant scales; and one of the primary drawbacks of the WENO schemes
(and other standard finite-difference schemes) is poor spectral resolution, even for very high orders of accuracy.
While spectral methods [11,31] capture a given range of scales exactly, their applications are restricted to
simple domains with periodic boundaries. Compact finite-difference (FD) schemes were introduced [42]
that had significantly higher spectral resolution compared with that of noncompact schemes with the same
order of convergence. These schemes use an implicit formulation for evaluating the interface flux or the
cell-centered flux derivative to achieve higher orders of convergence with smaller stencil sizes (hence the
term “compact”) and higher spectral resolution for a given order of convergence. The schemes have been
successfully applied to incompressible [20, 71] and compressible [21, 43] fluid dynamics, aero-acoustics [21, 56],
and electromagnetics [57]. The high spectral resolution has led to their application to direct numerical
simulation (DNS) [40] and large-eddy simulation (LES) [50] of turbulent flows. Originally formulated for a
uniform grid, they have been extended and applied to nonuniform grids [24, 62,68]. Linear compact schemes
result in oscillations across discontinuities and a non-linearly stable, total variation bounded (TVB) compact
scheme was proposed [14] for shock calculations and further improved [74].

Several attempts have been made to construct a high-resolution, non-oscillatory scheme by applying the
solution-adaptive algorithm of the WENO scheme to compact schemes. One approach to construct such
schemes, the weighted compact nonlinear schemes (WCNS), was proposed [17, 18] based on a two-stage
nonconservative computation of the flux derivative on a staggered mesh. The first stage involves the non-
oscillatory reconstruction of the flux at the interface using an adaptive compact scheme [17] or the WENO
scheme [18], and the second stage computes the cell-centered flux derivative from the interface fluxes using a
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high-order central compact scheme. The use of an adaptive compact scheme in the first stage [17] required the
solution to three tridiagonal systems of equations at each time-integration step/stage. This drawback resulted
in the use of the noncompact ENO or WENO schemes for the first stage in subsequent implementations
of this approach [18,70,75]. Thus, the overall scheme has a linear left-hand side and a solution-dependent
right-hand side, and the LU decomposition of the left-hand side can be carried out as a precomputation step.
Although this approach is computationally inexpensive, the use of noncompact schemes in the interface flux
calculations compromises the spectral resolution of the overall scheme. It is observed [18, Figure 2] that the
spectral resolution of these schemes is only marginally higher than that of the WENO schemes.

Another approach for implementing a weighted, non-oscillatory compact scheme is the hybrid compact-
ENO/WENO scheme. A hybrid compact-ENO scheme [4] was introduced in which the ENO scheme is used
at grid points at and near a discontinuity while an upwind compact scheme is used at all other grid points.
A first-order discontinuity detector is used to switch between the compact scheme and the ENO scheme.
Two upwind compact schemes were introduced requiring the solution of pentadiagonal systems of equations.
This algorithm was applied to the DNS of turbulent flow over a compression ramp [3]. This approach was
improved by introducing the hybrid compact-WENO scheme [51] and formulating the compact scheme as
a conservative finite-difference scheme to improve the coupling with the shock-capturing WENO scheme.
The computational cost was reduced by using a compact scheme that requires the solution to a tridiagonal
system of equations. A characteristic-based hybrid compact-WENO scheme was proposed [53] in which the
reconstruction is carried out on the characteristic variables; however, this requires the solution of a block
tridiagonal system of equations and is computationally more expensive. In addition, a smooth switching
parameter is used to switch between the compact scheme and the WENO scheme. One of the primary
drawbacks of this approach is that it uses a non-compact scheme at and near discontinuities, thus reducing
the spectral resolution. This is critical for studies involving the interaction of small length-scale features with
discontinuities, such as shock-turbulence interactions. In addition, for flows dominated by a large number of
discontinuities and sharp gradients (e.g., shocklets and shear layers in fluid dynamics), this approach will
result in applying the noncompact ENO or WENO scheme to the majority of the domain.

A third approach is the compact-reconstruction WENO (CRWENO) scheme [25, 27] that applies the
WENO algorithm to compact interpolation schemes. Lower-order compact schemes are identified along with
optimal coefficients such that their weighted sum is a higher-order compact scheme. Solution-dependent
weights are computed by using the smoothness indicators of the WENO scheme such that the overall
scheme is non-oscillatory across discontinuities and high-order accurate for smooth solutions. Unlike the
hybrid compact-WENO schemes, the CRWENO schemes reduce to a lower-order compact scheme near the
discontinuities, instead of a noncompact scheme, and thus retain a higher spectral resolution. Fifth-order
CRWENO schemes have been constructed and successfully applied to a large range of problems, including
the DNS of turbulent flows [26] as well as compressible aerodynamics flows [28]. Although the CRWENO
scheme uses compact interpolation stencils, the calculation of the nonlinear weights is identical to that of the
WENO scheme, and the overall scheme has the same stencil width as the WENO scheme.

While the WCNS schemes have a linear left-hand side that can be prefactored, the hybrid compact-WENO
and the CRWENO schemes require the solution of a solution-dependent banded system of equations along
each one-dimensional grid line. The hybrid compact-WENO scheme uses a linear compact scheme; however,
the position of discontinuities may change as the solution evolves, and thus the grid points where the WENO
scheme is applied changes. The final system of equations depends on the solution at that specific time. The
CRWENO scheme results in a solution-dependent system of equations since the coefficients are a function of
the local smoothness of the solution. The hybrid compact-WENO and the CRWENO schemes thus entail the
added numerical cost of solving banded systems of equations along each grid line at each time-integration step
or stage. It has been demonstrated [27] that the CRWENO scheme is more computationally efficient than the
WENO scheme for single-processor simulations. Although the CRWENO scheme is costlier for the same grid
size (because of the solution of the banded system of equations), it yields solutions with significantly lower
errors that are comparable to those of the WENO scheme on a finer grid. The CRWENO scheme was thus
less expensive when comparing solutions of the same accuracy and resolution. This result was demonstrated
on smooth problems as well as problems with discontinuities for scalar conservation laws and systems of
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equations with component-wise reconstruction. Although a quantitative analysis of the numerical cost of
hybrid compact-WENO has not yet been presented in the literature, the conclusions regarding the CRWENO
scheme are expected to hold true also for the hybrid schemes, since the mathematical complexity is similar.

Thus, a crucial issue in the scalable, parallel implementation of these nonlinear compact schemes (the
hybrid compact-WENO and the CRWENO schemes) on distributed-memory platforms is the efficient parallel
solution of banded systems of equations (in this study, we focus entirely on compact schemes that result
in a tridiagonal system). Previous attempts at implementing parallel compact schemes have followed three
approaches. One approach is the decoupling of the global system of equations into separate systems inside
each subdomain. A parallel hybrid compact-WENO scheme was proposed [13] in which the noncompact
WENO scheme is used to calculate the interface flux at the subdomain boundaries. This results in decoupled
systems of equations inside each subdomain that can be solved in parallel. The communication requirements
for this approach is identical to a corresponding noncompact scheme. A similar approach was proposed [38] in
which a central compact scheme is used in the interior and biased compact schemes are used at the physical
and subdomain boundaries to eliminate any coupling across the subdomain boundaries. The boundary
schemes are derived to minimize the numerical instabilities arising from applying a downwind scheme at the
inflow boundary and the excessive dissipation due to the upwind scheme at the outflow boundary. In order to
yield non-oscillatory solutions, however, a compact filter is used that requires the solution of a global system
of equations at each time-integration step and is solved in parallel using a predictor-corrector approach. These
attempts were successful in obtaining high-resolution solutions with compact schemes on parallel platforms;
however, one major drawback is that the decoupling across subdomains results in the numerical properties
of the scheme being a function of the number of processors. As the number of processors increase for the
same domain size, the spectral properties of the compact scheme gets compromised (more so in [13] since the
noncompact WENO scheme is used at the subdomain boundaries), and numerical errors are introduced [38].
Thus, this approach is not well suited for massively parallel simulations with small subdomain sizes.

An alternative approach has been the parallel implementation of the tridiagonal solver. A parallel compact
scheme with a pipelined Thomas algorithm (PTA) [52] was proposed in which the idle time of the processors
during the forward and backward solves is used to carry out nonlocal data-independent computations (such as
solving in the next spatial dimension) or local data-dependent Runge-Kutta step completion calculations. This
algorithm requires a complicated static schedule to control the processor communications and computations.
In addition, there is a trade-off between communication and computation efficiencies: either smaller messages
are communicated, resulting in smaller idle times for the processors or larger messages are communicated
but with longer idle times. A reduced parallel diagonally dominant (PDD) [64] algorithm was developed
that solves a perturbed linear system. This approach introduces an error due to assumption of diagonal
dominance that is bounded. In addition, several other efforts have been made to implement a parallel
tridiagonal solver [19, 23,36,48, 49,63, 69], although they may not have been applied specifically to compact
finite-difference schemes. Some of these algorithms suffer from the drawback that they significantly increase
the number of mathematical operations required to solve the system [36].

A data transposition method was proposed [16] in which the entire system of equations to be solved is
collected on one processor and solved sequentially. In a multidimensional simulations, for dimensions along
which the domain has been parallelized, “pencils” of data are transposed between processors. A similar
approach has been used for pseudo-spectral schemes [29]. This approach suffers from a major drawback
that it is very communication intensive; as noted in both these studies, over 60% of the total execution
time is spent in the data transposition operations. This makes the efficiency and speedup of the algorithms
dependent on the communication networks of the parallel platform.

The various drawbacks of the current approaches have limited the application of compact finite-difference
schemes in the context of massively parallel simulations in application areas such as turbulent flows. Recent
work on leadership-class computing platforms, such as [9], apply standard, noncompact finite-difference
schemes. In this work, we seek to address this deficiency. We present a parallel implementation of nonlinear
compact schemes with the following aims that address some of the drawbacks of existing approaches: the
compact scheme does not involve any parallelization-related approximations or decoupling, the implementation
is straightforward and does not require any complicated scheduling, the mathematical complexity of the
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Figure 1: Schematic diagram illustrating the domain discretization.

tridiagonal solver is not significantly higher than its uniprocessor counterpart, and the overall scheme should
exhibit the higher computational efficiency observed in single-processor simulations at parallelization levels
of practical relevance and therefore be a viable alternative for simulations such as [9]. We realize these
aims by implementing an efficient, scalable tridiagonal solver based on the partitioning or substructuring
approach [19,23,49,69]. Our implementation differs from other algorithms in that the reduced tridiagonal
system representing the subdomain boundaries is solved iteratively. The reduced system represents the
coupling between points separated by the subdomain size and is expected to be diagonally dominant. We
stress here that we iterate to machine-zero accuracy, and thus our solution does not have any parallelization
errors. We demonstrate our algorithm and present results with the fifth-order CRWENO scheme; however,
our approach is applicable to the hybrid compact-WENO schemes as well.

This report is organized as follows. Section 2 describes the numerical method and the CRWENO scheme,
as well as the numerical properties that motivate its use. Section 3 describes our parallel implementation
of these algorithms and presents a scalability analysis of the proposed method for some representative,
manufactured problems. Large core-count simulations of physically relevant problems are reported in Section
4. Conclusions are summarized in Section 5.

2 Compact Finite-Difference Schemes

A hyperbolic conservation law can be expressed in the differential form as

∂u

∂t
+
∂fi(u)

∂xi
= 0 in Ω; i = 1, ·, D, (1)

u(x, 0) = u0(x) forx ∈ Ω, (2)

u(x, t) = g(x, t) forx ∈ ∂Ω, (3)

where u is an n-dimensional vector of conserved quantities, x = [xi; i = 1, ·, D]T is the position vector
in D-dimensional space, fi is the n-dimensional flux vector along the ith dimension, u0(x) is the initial
solution, and g(x, t) is the boundary condition. The domain is given by Ω, and ∂Ω denotes the boundary.
In the following paragraphs, the numerical discretization of the one-dimensional (D = 1) conservation
law is considered, but the methodology can be extended trivially to multiple dimensions. Figure 1 shows
a representative domain of unit length and its discretization with an N + 1-point grid. A conservative,
finite-difference discretization of the one-dimensional conservation law is given by

duj
dt

+
1

∆x

(
hj+1/2 − hj−1/2

)
= 0, (4)

where uj = u(xj); xj = j∆x is the cell-centered value and hj±1/2 is the numerical flux at the interface. The
numerical flux function h(x) is required to satisfy exactly

∂f

∂x

∣∣∣∣
x=xj

=
1

∆x
[h(xj+1/2, t)− h(xj−1/2, t)] (5)
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and can thus be defined implicitly as

f(x) =
1

∆x

∫ x+∆x/2

x−∆x/2

h(ξ)dξ. (6)

Equation (4) is exact, and no numerical approximation is involved in the discretization. It represents an
ordinary differential equation (ODE) in time and can thus be solved by using an appropriate ODE solver.
In the current implementation, the integrators available in the TS module of PETSc [5–7] is used to solve
Eq. 4. Unless otherwise mentioned, the numerical examples in this report are solved by using the classical
fourth-order, four-stage Runge-Kutta scheme.

The “reconstruction” step computes the numerical flux at the interface, hj+1/2, from the cell-centered

values of the flux function, fj , to the desired order of accuracy. The approximate flux function f̂(x) ≈ h(x)
satisfies the relation

∂f

∂x

∣∣∣∣
x=xj

=
1

∆x

(
hj+1/2 − hj−1/2

)
=

1

∆x

(
f̂j+1/2 − f̂j−1/2

)
+O(∆xr), (7)

where r is the desired order of the scheme. The solution to hyperbolic conservation laws represents the
convection or propagation of the characteristic quantities, and the reconstruction of numerical flux needs to
be upwinded according to the direction of convection to yield robust solutions. In the following subsections,
the left-biased reconstruction of a scalar interface flux is described, and the formulation for a right-biased
reconstruction can be obtained by reflecting the expressions around the given interface. The final interface
flux is obtained by appropriately combining the left- and right-biased flux based on the local characteristic
behavior.

2.1 WENO Schemes

The WENO schemes [37, 45] use the idea of adaptive stenciling to achieve high order accuracy when the
solution is smooth and yield non-oscillatory solutions across discontinuities. At a given interface, there are r
candidate stencils for an rth-order interpolation. Optimal coefficients exist for each of these stencils such that
the weighted sum results in a (2r − 1)th order interpolation. Nonlinear weights are obtained by scaling these
optimal weights by local smoothness of the solution such that they approach the optimal values when the
solution is smooth and approach zero for stencils that contain discontinuous data. The final scheme is the
weighted sum of the rth-order stencils with the nonlinear weights. In this study, we implement the fifth-order
WENO scheme that is constructed by the following three third-order schemes:

f̂1
j+1/2 =

1

3
fj−2 −

7

6
fj−1 +

11

6
fj , (8)

f̂2
j+1/2 = −1

6
fj−1 +

5

6
fj +

1

3
fj+1, (9)

f̂3
j+1/2 =

1

3
fj +

5

6
fj+1 −

1

6
fj+2. (10)

The optimal coefficients are, respectively, c1 = 0.1, c2 = 0.6, and c3 = 0.3. Multiplying each of the third-order
scheme with the corresponding optimal coefficient and adding results in the fifth-order scheme, we obtain

f̂j+1/2 =
1

30
fj−2 −

13

60
fj−1 +

47

60
fj +

27

60
fj+1 −

1

20
fj+2. (11)

The nonlinear weights are computed from the optimal coefficients and the local solution smoothness. The
original formulation for the WENO scheme [37] defines the weights as

ωk =
αk∑
k αk

; αk =
ck

(ε+ βk)
p ; i = 1, . . . , 3, (12)
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where ε = 10−6 is a small number to prevent division by zero, and the smoothness indicators (βk) for the
stencils are given by

β1 =
13

12
(fj−2 − 2fj−1 + fj)

2 +
1

4
(fj−2 − 4fj−1 + 3fj)

2, (13)

β2 =
13

12
(fj−1 − 2fj + fj+1)2 +

1

4
(fj−1 − fj+1)2, (14)

and β3 =
13

12
(fj − 2fj+1 + fj+2)2 +

1

4
(3fj − 4fj+1 + fj+2)2. (15)

Subsequent studies [10,35] reported several drawbacks with this definition of the weights, including suboptimal
convergence for certain classes of problems and excessive dissipation around discontinuities; and alternative
definitions were proposed [10,12,35,72]. Based on a detailed nonlinear analysis of the numerical properties of
the WENO schemes [26], the weights defined in [72] are used in this study. The weights are defined as

ωk =
αk∑
k αk

; αk = ck

[
1 +

(
τ

ε+ βk

)p]
, (16)

where τ = (fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2)2. Multiplying Eqs. (8)–(10) by the nonlinear weights and
then summing them results in the fifth-order WENO scheme (WENO5):

f̂j+1/2 =
ω1

3
fj−2 −

1

6
(7ω1 + ω2)fj−1 +

1

6
(11ω1 + 5ω2 + 2ω3)fj +

1

6
(2ω2 + 5ω3)fj+1 −

ω3

6
fj+2. (17)

When the solution is smooth, ωk → ck, and Eq. (17) reduces to Eq. (11).

2.2 CRWENO Schemes

Compact finite-difference schemes [42] compute the unknown interface flux or the flux derivative implicitly
and require the solution of a system of equations. This coupling results in a higher spectral resolution, lower
absolute errors, and smaller interpolation stencils, compared with standard finite-difference schemes of the
same order of convergence. A general, conservative compact scheme to approximate the interface flux can be
expressed as

A
(
f̂j+1/2−m, . . . , f̂j+1/2, . . . , f̂j+1/2+m

)
= B (fj−n, . . . , fj , . . . , fj+n) , (18)

where A and B are linear operators, and m and n are control their stencil widths. The derivation of the
CRWENO scheme follows that of the WENO scheme but with compact schemes. At a given interface, there
exist r candidate rth-order compact schemes such that their weighted sum (with optimal coefficients) is a
(2r − 1)th-order compact scheme,

r∑
k=1

ckA
r
k

(
f̂j+1/2−m, . . . , f̂j+1/2+m

)
=

r∑
k=1

ckB
r
k (fj−n, . . . , fj+n)

⇒ A2r−1
(
f̂j+1/2−m, . . . , f̂j+1/2+m

)
= B2r−1 (fj−n, . . . , fj+n) . (19)

The optimal weights are then replaced by solution-dependent, nonlinear weights (ωk), and the CRWENO
scheme can be expressed as

r∑
k=1

ωkA
r
k

(
f̂j+1/2−m, . . . , f̂j+1/2+m

)
=

r∑
k=1

ωkB
r
k (fj−n, . . . , fj+n) . (20)

The present implementation of the CRWENO schemes use the nonlinear weights defined for the WENO
scheme in Section 2.1.
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Figure 2: Boundary treatment using ghost points.

The fifth-order CRWENO scheme [25,27] is constructed by combining three third-order compact schemes.
The candidate compact schemes and their optimal coefficients are given by

2

3
f̂j−1/2 +

1

3
f̂j+1/2 =

1

6
(fj−1 + 5fj) ; c1 =

2

10
, (21)

1

3
f̂j−1/2 +

2

3
f̂j+1/2 =

1

6
(5fj + fj+1) ; c2 =

5

10
, (22)

2

3
f̂j+1/2 +

1

3
f̂j+3/2 =

1

6
(fj + 5fj+1) ; c3 =

3

10
. (23)

The fifth-order accurate compact scheme is obtained by multiplying the third-order schemes by their optimal
coefficients (ck) and adding

3

10
f̂j−1/2 +

6

10
f̂j+1/2 +

1

10
f̂j+3/2 =

1

30
fj−1 +

19

30
fj +

1

3
fj+1. (24)

The optimal coefficients are replaced with the nonlinear weights ωk, and we get the fifth-order CRWENO
scheme (CRWENO5),(

2

3
ω1 +

1

3
ω2

)
f̂j−1/2 +

[
1

3
ω1 +

2

3
(ω2 + ω3)

]
f̂j+1/2 +

1

3
ω3f̂j+3/2

=
ω1

6
fj−1 +

5(ω1 + ω2) + ω3

6
fj +

ω2 + 5ω3

6
fj+1. (25)

The weights ωk are computed by Eq. (16) and Eqs. (13)–(15). When the solution is smooth, ωk → ck, and
Eq. (25) reduces to (24).

Equation (25) requires the solution of a tridiagonal system of equations. Since the weights ωk are
solution-dependent, the system of equations has to be solved along each grid line at every time-integration
step/stage.

2.3 Boundary Treatment

The implementation of the scheme at the physical boundaries on a bounded domain is critical to the accuracy
and stability of the overall scheme. In this study, the physical domain is extended by using “ghost” points, as
shown in Fig. 2. The dependent variables at the ghost points are set such that the interface flux is consistent
with the physical boundary conditions. Standard finite-difference schemes can thus be applied without any
modifications at the boundary interfaces. However, the application of compact schemes is not possible because
of the absence of “ghost interfaces.” Specification of the flux at interfaces outside the physical domain may
not be possible, except for very simple problems.

The implementation of the CRWENO5 scheme [26,27] used the fifth-order WENO scheme at the boundary
interfaces, and a numerical analysis of the overall discretization [25] showed that this boundary treatment
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was numerically stable. In this study, we use this implementation, expressed as follows:

j = 0 : Eq. (17);

j = 1, . . . , N − 1 : Eq. (25);

j = N : Eq. (17).

The overall scheme needs three ghost points at the boundaries, and the resulting tridiagonal system of
equations along a grid line has the first and last diagonal element as unity and off-diagonal elements as zero.

2.4 Numerical Properties

The numerical properties of the fifth-order compact finite-differencing schemes are briefly discussed in this
section. More detailed discussions have been previously presented [25–27] that demonstrate the superior
numerical properties of the CRWENO5 scheme compared with the WENO5 scheme. Equation (24) is the
linear fifth-order compact scheme underlying the CRWENO5 scheme. The resulting approximation for the
first derivative of the flux function can be expressed as

3

10
fx,j−1 +

6

10
fx,j +

1

10
fx,j+1 =

1

∆x

(
−1

30
fj−2 −

18

30
fj−1 +

9

30
fj +

10

30
fj+1

)
⇒ fx,j = f∆,j +

1

600

∂6f

∂x6

∣∣∣∣
j

∆x5 +
1

2100

∂7f

∂x7

∣∣∣∣
j

∆x6 +O(∆x7), (26)

where the term f∆ denotes the finite-difference approximation to the first derivative. The corresponding
expression for Eq. (11), which is the underlying linear interpolation for the WENO5 scheme, can be expressed
as

fx,j =
1

∆x

(
−1

30
fj−3 +

1

4
fj−2 − fj−1 +

1

3
fj +

1

2
fj+1 −

1

20
fj+2

)
+

1

60

∂6f

∂x6

∣∣∣∣
j

∆x5 +
1

140

∂7f

∂x7

∣∣∣∣
j

∆x6 +O(∆x7). (27)

Examination of the leading-order dissipation and dispersion error terms shows that the compact interpolation
scheme yields solutions with 1/10 the dissipation error and 1/15 the dispersion error of the solutions obtained
by the noncompact scheme, for the same order of convergence. This implies that for smooth solutions, the
fifth-order WENO scheme requires 101/5 or approximately 1.5 times more grid points per dimension to
yield a solution of comparable accuracy as the fifth-order CRWENO scheme. This fact will be used in later
sections when comparing the computational efficiencies of the CRWENO5 and WENO5 schemes on multiple
processors. The numerical cost of the CRWENO5 scheme and its tridiagonal solver is less than the cost of the
WENO5 scheme on the finer grid (especially so in multiple dimensions, where the grid needs to be refined in
each dimension) for solutions obtained on single processors [27].

The primary motivation for the use of compact schemes is the high spectral resolution that results in
more accurate modeling of moderate and small length scales. Compact schemes (and other high-resolution
schemes) are thus well suited for applications with a large range of length scales. The spectral properties
of finite-difference schemes are quantified by a Fourier analysis, and a detailed linear analysis as well as
a nonlinear spectral analysis of the CRWENO5 scheme has been presented [26, 27]. Figure 3 shows the
dispersion and dissipation properties of the CRWENO5, WENO5, and their underlying linear schemes. The
spectral properties of the linear schemes, Eqs. (11) and (24), are obtained through a Fourier analysis of
the finite-difference approximation. The spectral properties of the WENO5 and CRWENO5 schemes, Eqs.
(17) and (25), are obtained using a nonlinear spectral analysis [22,26]. The linear fifth-order compact and
the CRWENO5 schemes have significantly higher spectral resolution than do the corresponding standard
fifth-order and WENO5 schemes respectively. The compact schemes also exhibit lower dissipation for the
low and moderate wavenumbers that are accurately modeled, while they show higher dissipation for very
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(a) Dispersion (b) Dissipation

Figure 3: Spectral properties of the linear and nonlinear schemes: “Compact5” refers to Eq. (24);
“NonCompact5” refers to Eq. (11); CRWENO5 and WENO5 refer to Eqs. (25) and (17), respectively.

high wavenumbers that are incorrectly aliased to lower wavenumbers. Thus, this higher dissipation reduces
the small length-scale errors. Moreover, the nonlinear weights contribute significantly to the degradation
of spectral resolution and increase the dissipation of the schemes, for both the CRWENO5 and WENO5
schemes (compared with their linear counterparts).

Table 1 compares the bandwidth resolving efficiency [42] of Eq. (24) with standard finite-difference
schemes as well as other high-resolution schemes in the literature. The resolving efficiency of the fifth-
order compact scheme is higher than that of the standard fifth-, seventh-, and ninth-order finite-difference
schemes. It compares well with the sixth- and eighth-order central schemes proposed in [42], as well as the
bandwidth-optimized WENO schemes proposed in [47].

3 Parallel Implementation

The fifth-order CRWENO scheme described in the previous section, Eq. (25), results in a solution-dependent,
tridiagonal system of equations of the form

Af̂ = r; where r = Bf + b. (28)

Referring to the discretized domain shown in Fig. 1 with N − 1 interior grid points (1, . . . , N − 1), and

N interfaces, the tridiagonal, left-hand side matrix A is of size N ×N , f̂ = [f̂j+1/2; j = 0, ·, N − 1]T is the
N -dimensional vector of unknown flux at the interfaces, B is a N × (N −1) matrix representing the right-hand
side operator, and f = [fj ; j = 1, ·, N − 1]T is the vector of (known) flux at the cell centers. The boundary
terms are represented by b.

Parallel implementations of the CRWENO scheme (as well as the hybrid compact-ENO/WENO schemes)
depend on the efficient, multiprocessor solution of Eq. (28). This section describes our implementation of a
parallel tridiagonal solver and demonstrates its performance and scalability.
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Table 1: Bandwidth resolving efficiencies for various schemes for an error tolerance of 0.01

Scheme Bandwidth Resolving Efficiency

5th-order standard Eq. (11) 0.35
7th-order standard 0.42
9th-order standard 0.48

5th-order compact Eq. (24) 0.61

WENO-SYMBO (r = 3) [47] 0.49
WENO-SYMBO (r = 4) [47] 0.56

6th-order central compact (tridiagonal) [42] 0.50
8th-order central compact (tridiagonal) [42] 0.58

Figure 4: Example of a partitioned grid: 21 points distributed among 5 processors; the black numbers
indicate the global numbering of points, while the blue numbering is the local numbering on each processor.

3.1 Tridiagonal Solver

We implement a parallel tridiagonal solver with the following aims: it solves the system to sufficient accuracy
such that no parallelization-induced errors are introduced in to the numerical scheme, it does not significantly
increase the mathematical complexity with respect to the Thomas algorithm on a single processor, and it
does not involve any collective communications. We use the substructuring or partitioning approach for
the underlying algorithm. Figure 4 shows an example of a case where a 21-point grid is distributed on five
processors. The global and local numbering of the points are shown. We explain the substructuring process
by reordering the tridiagonal system as shown in Fig. 5. The rows corresponding to the first point on each
subdomain (except the first, which is a physical boundary point) are placed at the bottom of the matrix
in the order of the processor rank on which they reside. These rows are marked by the dotted box in Fig.
5. This results in decoupled tridiagonal blocks on each processor as marked by the solid boxes in the same
figure. The solution is then obtained as follows:

• Stage 1 – Parallel elimination of the tridiagonal blocks on each processor comprising all points of the
subdomain except the first point (unless its the first global point, i.e., a physical boundary): This stage
requires no communication. The resultant matrix is shown in Fig. 6. New nonzeroes are created (âi),
which are stored in the same memory locations as ai that are eliminated. Note that each row eliminates
the one after it as well as the first local row that was reordered; for example, row 5 eliminates rows 6
and 4, after which row 6 eliminates rows 7 and 4, and so on.

• Stage 2 – Elimination of the first row on each processor (except the first) using the last row of the
previous processor: This stage requires a one-way communication—each processor, except the last,
sends its last row to the next processor. After receiving this data, each processor then eliminates the
subdiagonal term (ai) of the first local row, i.e., the rows that were reordered, using the row received.
The superdiagonal term (ĉi) of the first local row is eliminated using the last local row. For example,
processor 1 sends row 7 to processor 2. Processor 2 then eliminates the subdiagonal term (a8) of row 8
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Figure 5: Reordered tridiagonal system of equations for a multiprocessor algorithm: The lines divide the
data stored on each processor; the solid boxes show the decoupled tridiagonal blocks on each processor; the
rows inside the dashed box at the bottom are the first point in each subdomain (except the first), and each
row resides on a different processor.

using row 7. Processor 2 then eliminates the superdiagonal term (ĉ8) using row 11. Figure 7 shows the
resulting matrix. The elimination process creates a reduced tridiagonal system of size (p− 1) where p
is the number of processors. Each row of this reduced system resides on a different processor.

• Stage 3 – Solution of the reduced tridiagonal system: Although the size of this system is smaller than
the size of the complete system, especially for p� N (where N is the global size of the system), this
stage is crucial to the overall performance and scalability of the algorithm (especially as p→ O(N)).
This is discussed in more detail in the following paragraphs.

• Stage 4 – Backward-solve to obtain the final solution: Following the solution of the reduced system, all
processors obtain the final solution in their subdomain. Each processor (except the last) needs the
solution of the first row of the next processor (due to nonzero ci in the last local row). Thus, a one-way
communication is needed, followed by a parallel backward-solve to compute the final solution.

This completes the description of the basic algorithm. It should be evident that the reordering of the original
tridiagonal system is purely for deriving this algorithm; no actual reordering of the arrays is necessary in the
implementation.

The main challenge in solving the reduced system of equations is that each row resides on a different
processor. There are two possible approaches for the direct solution of this system. One approach is to
use the recursive-doubling algorithm [66] and solve the system on all processors. Another approach is the
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Figure 6: Tridiagonal matrix after Stage 1: The hat indicates values altered during the elimination.

gather-and-solve method where the entire reduced system is gathered on one processor, solved, and the
solution scattered back. Multidimensional problems require the solution to a system of equations along each
grid line, and the solutions to several systems are required at each iteration. The efficiency of the latter
approach can be improved by gathering the reduced systems for different grid lines on different processors
and solving them simultaneously. One can observe that both approaches have significant communication
overhead for this application, especially since each processor has only one row of the reduced system. The
overall algorithm is not very scalable because the cost of the third stage increases significantly as the number
of processors increases for a given size of the system. This will be demonstrated shortly.

Our approach stems from the observation that the tridiagonal system of equations results from a finite-
difference approximation of a hyperbolic flux term. Although the compact scheme couples the computation
of the flux at neighboring interfaces, the coupling between interfaces that are several grid points away will be
very weak. The reduced system of equations represents the coupling between the first grid points of each
subdomain and are separated by the subdomain size. This system will have very strong diagonal dominance
for p � N . As p → O(N), the diagonal dominance will decrease. We thus propose solving the reduced
system using Jacobi iterations with an initial guess that is the solution of the corresponding diagonal system
(i.e., neglecting the off-diagonal terms). For large subdomain sizes (low number of processors), the error in
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Figure 7: Tridiagonal matrix after Stage 2: Elimination of all the rows results in a reduced tridiagonal
equation (shown by the box), with each row residing on a different processor.

the initial guess is expected to be below machine zero, and no iterations will be needed. As the number of
processors increases for the same problem size, the diagonal dominance will decrease, and the number of
iterations needed to converge to machine zero accuracy will increase steadily.

We note here that although the reduced system is solved iteratively, it is solved to machine-zero accuracy
in all our computations. This ensures that the tridiagonal solver does not introduce any approximations in
the overall algorithm, and in all our numerical experiments we verify that the solutions obtained on multiple
processors are identical to those obtained on a single processor. We further reduce the communication
overhead of our algorithm by eliminating tolerance-based exit criteria for the Jacobi iterations and using a
specified number of iterations. Thus, no collective communications are required, and each iteration requires
only point-to-point communications between neighboring processors. However, this does require an a priori
estimate of the number of iterations required to ensure machine-zero convergence of the reduced system.

We present an example to illustrate the behavior of the tridiagonal solver. We consider the tridiagonal
system corresponding to Eq. (24) with N = 1024 and a random right-hand side. Figure 8 shows the elements
of the p/2th column of the inverse of the reduced system for 16, 64, 128, and 256 processors (where p is the
number of processors), corresponding to subdomain sizes of 64, 16, 8, and 4 points, respectively. The y-axis
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(a) 16 processors (b) 64 processors

(c) 128 processors (d) 256 processors

Figure 8: Elements of the p/2th column of the inverse of the reduced system for various number of processors
(p).

range is set to show only the elements larger than machine zero (10−16). We observe that for a subdomain
size of 64 points (16 processors), only the diagonal element has a value higher than machine-zero. The
reduced system and its inverse can thus be treated as diagonal matrices, and no Jacobi iterations are needed
to solve it. The number of non-machine-zero elements grows and the diagonal dominance decreases as the
subdomain size decreases; consequently, Jacobi iterations are needed to solve the reduced system. We note
that for this example even for a subdomain size of 4 points (256 processors), the diagonal element is an order
of magnitude larger than the largest off-diagonal element.
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Figure 9: Tridiagonal solver: error as a function of
subdomain size.

Figure 9 shows the error in the solution of the
tridiagonal system (N = 65536) as a function of
the subdomain size, with various numbers of Jacobi
iterations as well as the direct solution to the reduced
system using the gather-and-solve approach. We
observe that for a given number of Jacobi iterations,
the tridiagonal solver yields a solution identical to
the direct solution until a certain subdomain size; for
smaller subdomains, the error gradually grows. As
an example, with zero Jacobi iterations specified, the
iterative solver yields solutions identical to the direct
solver for subdomain sizes larger than 64 points per
processor. Two Jacobi iterations are able to yield
solutions without errors for subdomain sizes larger
than 32 points per processor. As the subdomain size
shrinks, we need a larger number of Jacobi iterations
to ensure that the solution is identical to that of a
direct method. We note, however, that the iterative
solution need not be identical to the direct solution;
it is sufficient if the error in the iterative solution
is below machine zero. In this example, 6 Jacobi
iterations are thus sufficient for a subdomain size
of 4 points per processor to ensure that the overall
scheme has no parallelization-induced errors.

3.2 Performance Analysis

We analyze the performance of the nonlinear compact scheme with our implementation of the tridiagonal solver
in this section. We apply the numerical method described in Section 2 to the inviscid Euler equations [39].
The scalar reconstruction schemes are applied to each component of the vector quantities. We investigate the
computational efficiency of the CRWENO5 with respect to the WENO5 scheme for multi-processor solutions.
It has been previously demonstrated that the CRWENO5 scheme is more efficient than the WENO5 scheme
for solutions on a single processor [25,27]. While the cost of the CRWENO5 scheme is higher than that of the
WENO5 scheme on the same grid (because of the tridiagonal system solution), the former yields solutions
with higher accuracy and resolution than does the latter; therefore, the WENO5 scheme requires a finer
grid (consequently higher numerical cost) to yield comparable solutions. Our implementation of the parallel
tridiagonal solver is such that its relative cost increases as the number of processors increases for the same
domain size, because of an increase in the number of Jacobi iterations needed for machine-zero convergence
of the reduced system. It is thus expected that there will be a critical sub-domain size beyond which (i.e., for
finer partitioning) the increasing cost of the tridiagonal solver will cause the efficiency of the CRWENO5
scheme to be lower than that of the WENO5 scheme. In other words. it will be possible to obtain comparable
solutions with the WENO5 scheme on a finer grid at a lower numerical cost. Our objective is to find this
critical subdomain size through representative numerical experiments and demonstrate that compact schemes
retain their higher efficiency for domain partitioning sizes of practical relevance.

All computations presented in this section are carried out on Vesta, a Blue Gene/Q development rack
maintained by the Argonne Leadership Computing Facility (ALCF) [2]. The system has two racks, each with
10, 24 compute nodes. Each compute node has a 1600 MHz PowerPC A2 processor with a 16-core chip and
16 GB RAM. There are thus 327, 68 cores with a peak performance of 419.44 teraflops, and our choice of test
cases presented below is based on these available resources.

Our numerical experiments involve two types of problems, both involving the advection of density waves
on periodic domains—a smooth sinusoidal wave and a wave that is a sum of sinusoidal waves with all the
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(a) Wall time vs. number of processors (b) Efficiency vs. sub-domain size

Figure 10: One-dimensional advection of density sine wave – Wall times and efficiencies for the WENO5 and
CRWENO5 schemes on grids with 64, 96, 128, 192, 256, and 384 points (data in Table 2).

wavenumbers supported by the grid. We study these problems in one, two, and three spatial dimensions. We
start with the one-dimensional advection of a density wave. The initial density, velocity, and pressure are
given by

ρ = ρ0 + ρ̃ sin (2πx) ,

u = 1, p = 1/γ,

respectively, on a unit periodic domain x ∈ [0, 1]. The specific heat ratio is γ = 1.4. The mean density ρ0

is 1 and the amplitude of the sine wave is taken as ρ̃ = 0.1. Solutions are obtained with the WENO5 and
CRWENO5 schemes on grids with 64, 128, and 256 points (baseline grids). In addition, solutions are obtained
with the WENO5 scheme on grids with 1.5 times as many points (96, 192, and 384 points). A small time
step size of 10−4 is taken such that the errors due to the numerical time integration are negligible (relative to
those from the spatial discretization). The solutions are obtained after one cycle over the periodic domain.

Table 2 shows the L2 norm of the numerical errors and the wall times for the solutions corresponding to
different grid sizes (Nglobal) and subdomain sizes (Nlocal). The number of Jacobi iterations (NJac) required to
solve the reduced tridiagonal system (Section 3.1) for the CRWENO5 scheme is also shown for each solution.
The WENO5 and CRWENO5 schemes both show fifth-order convergence; and, as expected from the Taylor
series analysis (in Section 2.4), the CRWENO5 scheme yields solutions with errors that are an order of
magnitude lower compared to the WENO5 scheme on the same grid. The WENO5 scheme yields solutions of
comparable accuracy on grids that are 1.5 times finer, namely, the grids with 96, 192, and 384 points. It is
verified that the numerical errors for the solutions obtained with the CRWENO5 scheme are identical for
all the subdomain sizes considered for a given grid size. This verification is crucial in demonstrating that
our algorithm does not in fact introduce any parallelization-induced errors. The required number of Jacobi
iterations increases as the subdomain size decreases, as‘ expected from the earlier discussion of the nature of
the reduced tridiagonal system.

We compare the wall times for all the cases in order to assess the relative efficiency of the CRWENO5
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Table 2: Errors (L2) and wall times (in seconds) for the one-dimensional advection of a sinusoidal density
wave.
Nglobal Nlocal WENO5 CRWENO5

Error Wall time Error Wall time NJac

1 processor

64 64 1.0118E-07 8.5763E+01 1.1561E-08 9.6688E+01 0
96 96 1.3332E-08 1.2633E+02 - - -
128 128 3.1644E-09 1.6725E+02 3.3927E-10 1.8726E+02 0
192 192 4.1680E-10 2.4820E+02 - - -
256 256 9.8914E-11 3.2760E+02 1.0253E-11 3.6687E+02 0
384 384 1.3024E-11 4.8451E+02 - - -

2 processors

64 32 1.0118E-07 4.4940E+01 1.1561E-08 5.6432E+01 0
96 48 1.3332E-08 6.5250E+01 - - -
128 64 3.1644E-09 8.5767E+01 3.3927E-10 1.0300E+02 0
192 96 4.1680E-10 1.2635E+02 - - -
256 128 9.8914E-11 1.6611E+02 1.0253E-11 1.9515E+02 0
384 192 1.3024E-11 2.4452E+02 - - -

4 processors

64 16 1.0118E-07 2.4062E+01 1.1561E-08 4.1722E+01 2
96 24 1.3332E-08 3.4272E+01 - - -
128 32 3.1644E-09 4.4596E+01 3.3927E-10 6.1905E+01 1
192 48 4.1680E-10 6.4947E+01 - - -
256 64 9.8914E-11 8.4958E+01 1.0253E-11 1.0434E+02 0
384 96 1.3024E-11 1.2436E+02 - - -

8 processors

64 8 1.0118E-07 1.3524E+01 1.1561E-08 3.4970E+01 4
96 12 1.3332E-08 1.8661E+01 - - -
128 16 3.1644E-09 2.3931E+01 3.3927E-10 4.1513E+01 2
192 24 4.1680E-10 3.4254E+01 - - -
256 32 9.8914E-11 4.4308E+01 1.0253E-11 6.1754E+01 1
384 48 1.3024E-11 6.4167E+01 - - -

16 processors

128 8 3.1644E-09 1.3464E+01 3.3927E-10 3.4969E+01 4
192 12 4.1680E-10 1.8681E+01 - - -
256 16 9.8914E-11 2.3752E+01 1.0253E-11 4.1439E+01 2
384 24 1.3024E-11 3.3763E+01 - - -

32 processors

256 8 9.8914E-11 1.4207E+01 1.0253E-11 4.3370E+01 6
384 12 1.3024E-11 1.9461E+01 - - -

scheme compared with the WENO5 scheme. The wall times for the CRWENO5 scheme on the baseline grids
are compared with those of the WENO5 scheme on the 1.5x finer grids, since the errors for these cases are
comparable. The WENO5 cases on 1.5x grids are run on the same number of processors (and not 1.5 times as
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(a) 256 grid points (b) 2048 grid points

Figure 11: Energy spectrum of the numerical solutions to the one-dimensional advection of density fluctua-
tions.

many processors) since the number of processors is usually constrained. In other words, with a given number
of processors, we investigate whether the CRWENO5 scheme is more efficient, that is, whether it takes less
time than the WENO5 scheme to yield a comparable solution. The solutions obtained on one processor show
that the CRWENO5 scheme is more efficient; it has a lower wall time on the 64, 128, and 256 point grids than
does the WENO5 scheme on the 96, 192, and 384 point grids, respectively (as demonstrated previously [27]).

As we reduce the subdomain sizes for a given case of grid sizes (e.g., CRWENO5 on the 64-points grid
and WENO5 on the 96-points grid), we observe that the relative cost of the CRWENO5 scheme increases
because of the increasing number of Jacobi iterations. This results in the WENO5 scheme being more efficient
at smaller subdomain sizes. For example, for the CRWENO5 on the 64-points grid and the WENO5 on
the 96-points grid, the CRWENO5 is faster on 1 and 2 processors (corresponding to subdomain sizes of 64
and 32) but slower for 4 and 8 processors (corresponding to subdomain sizes of 16 and 8). Similarly, for
the CRWENO5 on the 128-points grid and the WENO5 on the 192-points grid, the CRWENO5 is faster
on 1, 2, and 4 processors (subdomain sizes of 128, 64, and 32) but more expensive on larger numbers of
processors. The CRWENO5 scheme on the 256-point grid is less expensive than the WENO5 scheme on
the 384-point grid on 1, 2, 4, and 8 processors (subdomain sizes of 256, 128, 64, and 32). Figure 10(a)
shows the wall time (in seconds) as a function of the number of processors for the CRWENO5 and WENO5
cases with comparable accuracy in Table 2 and shows the cost of the CRWENO5 scheme exceeding that of
the corresponding WENO5 scheme as the number of processor increases for a given grid size. Figure 10(b)
shows the efficiency (calculated based on the single-processor wall time of the CRWENO5 scheme on the
corresponding grid) as a function of the subdomain sizes. One can observe that at larger subdomain sizes,
the CRWENO5 scheme is more efficient; as the subdomain size decreases, the efficiency of the CRWENO5
scheme decreases and is lower than that of the WENO5 scheme. It can also be observed that the critical
sub-domain size at which the CRWENO5 scheme ceases to be more efficient is insensitive to the global grid
size. This is an important inference because it indicates that conclusions on the critical sub-domain size are
expected to hold true when this algorithm is applied to larger problems on larger numbers of processors.

The conclusions in the preceding paragraphs are drawn from the solution to a smooth sine wave for
which the CRWENO5 scheme reduces to a linear, fifth-order compact scheme, Eq. (24). We now consider the
advection of a periodic density fluctuations comprising sine waves with all grid-supported wavenumbers. The
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initial density is given by

ρ = ρ0 + ρ̃

N/2∑
k=1

A(k) sin (2πkx) ; A(k) = k−5/6, (29)

with ρ0 = 1, ρ̃ = 10−2, and N being the grid size. Uniform initial velocity (u = 1) and pressure (p = 1/γ)are
prescribed. The amplitude decay (A(k)) is such that the energy spectrum is representative of that in turbulent
flows. Although the solution is smooth, the presence of high wavenumbers results in sharp gradients that
are treated as discontinuities by the WENO5 and CRWENO5 schemes. Improvement in the behavior of
these schemes for these small length scales is an area of active research [26]; the current implementations
do not achieve fifth-order accuracy and convergence for such solutions. However, the CRWENO5 schemes
yield solutions with a higher spectral resolution than the WENO5 scheme [25,26] on identical grids; that is,
the WENO5 scheme needs a larger number of grid points to yield solutions of the same resolution. We thus
compare the numerical cost of these schemes on multiple processors for solutions with comparable spectral
resolutions.

Table 3: Wall times (in seconds) for the one-dimensional advection of density fluctuations.

Nproc Nlocal Wall Times NJac

WENO5 WENO5(F) CRWENO5 CRWENO5

256 grid points

1 256 (320) 1.6923E+02 2.1038E+02 1.8978E+02 0
2 128 (160) 8.6635E+01 1.0731E+02 1.0082E+02 0
4 64 (80) 4.5017E+01 5.5452E+01 5.7351E+01 2
8 32 (40) 2.3889E+01 2.9203E+01 3.3570E+01 2
16 16 (20) 1.3067E+01 1.5804E+01 2.6229E+01 6

2048 grid points

4 512 (640) 3.3216E+03 4.1357E+03 3.8087E+03 0
8 256 (320) 1.6836E+03 2.0940E+03 1.9465E+03 0
16 128 (160) 8.6243E+02 1.0682E+03 1.0467E+03 2
32 64 (80) 4.7498E+02 5.8497E+02 6.0045E+02 2
64 32 (40) 2.5312E+02 3.1040E+02 3.8539E+02 4
128 16 (20) 1.3726E+02 1.6694E+02 2.8026E+02 6

Number in parentheses is the Nlocal for the WENO5 scheme on the finer grid (“WENO5(F)”)

We solve the problem on two different grid resolutions to show that the critical subdomain size (below
which the compact schemes are less efficient) is not a function of the total problem size. We consider grids
with 256 and 2048 points (with time-step sizes of 2× 10−4 and 2× 10−5, respectively). Solutions are obtained
after one time period. Figure 11 shows the energy spectrum of the numerical solutions obtained by the
WENO5 and CRWENO5 schemes. One can see that the CRWENO5 scheme yields solutions with a higher
spectral resolution at moderate and high wavenumbers than does the WENO5 on the same grid; the WENO5
scheme yields solutions with a comparable resolution on grids that have 1.25 times more points (this is a
result of observation). We thus compare the numerical cost of the CRWENO5 scheme with that of the
WENO5 scheme on the grid with 1.25 times more points, for both the problem sizes considered.

Table 3 shows the wall times for the WENO5 and CRWENO5 schemes for the two problem sizes (baseline
grids with 256 and 2048 points) obtained on Nproc processors with subdomain sizes Nlocal. The column
“WENO5(F)” shows the wall times for the WENO5 scheme on a grid with 1.25 times as many points as the
corresponding baseline grids (grids with 320 and 2560 points, respectively). Also reported are Jacobi iterations
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Figure 12: One-dimensional advection of density fluctuations. Efficiency is a function of the subdomain for
the WENO5 and CRWENO5 schemes on grids with 256, 320, 2048, and 2560 points (data in Table 3).

(NJac) required by the CRWENO5 scheme to yield solutions identical to that obtained on a single processor.
Once again, we observe that the number of Jacobi iterations increases as the number of processors increase
and the subdomain size decreases. We note that the number of Jacobi iterations is not a function of the grid
size but only of the subdomain size. We also observe that for both problem sizes, the CRWENO5 scheme is
less expensive than the WENO5(F) scheme until a sub-domain size of 128 points; for lower subdomain sizes,
the WENO5(F) scheme is less expensive. Figure 12 shows the efficiency of the CRWENO5 scheme (on grids
with 256 and 2048 points) and the WENO5 scheme (on grids with 320 and 2560 points) as a function of the
subdomain size. We observe that the CRWENO5 scheme is more efficient for the larger subdomain sizes;
once again, it can be inferred that the critical subdomain size below which the CRWENO5 scheme is less
efficient is insensitive to the global domain size.

The one-dimensional numerical experiments demonstrate the basic properties of our parallel implemen-
tation of the nonlinear compact schemes. The compact schemes yield solutions that are comparable to
the solution obtained by the WENO5 scheme on a finer grid; however, on a single processor, they are less
expensive than the WENO5 scheme on the finer grid. They are thus less expensive when considering solutions
of the same accuracy and resolution. The cost of the tridiagonal solver increases as the number of processors
increases for a given grid size because the number of Jacobi iterations needed to solve the reduced system to
machine-zero accuracy increases. The relative cost of the CRWENO5 scheme increases as the subdomain
size decreases; and below a critical subdomain size, the compact schemes are less efficient than the WENO5
scheme. We demonstrate that for subdomain sizes larger than this critical subdomain size, the CRWENO5
scheme is significantly more efficient. In addition, this critical subdomain size is independent of the global
problem size, and thus this implementation is expected to scale for larger problems on correspondingly larger
number of processors.

We now investigate the performance on two-dimensional problems. Solution to multidimensional problems
with compact schemes require the solution to several tridiagonal systems of equations (one along each grid
line along each dimension). We expect the efficiency of the tridiagonal solver to improve because of the
increased arithmetic density of solving several systems together, along with more efficient communication
with larger message sizes. In addition, the WENO5 scheme will need a larger number of grid points along
each dimension thus amplifying the difference in the numerical cost of the CRWENO5 scheme on a coarser
grid and the WENO5 on a finer mesh. Based on these factors, we expect the compact schemes to be more
efficient than the WENO5 for smaller subdomain sizes per dimension. We start with a smooth problem with
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Table 4: Errors (L2) and wall times (in seconds) for the two-dimensional advection of a sinusoidal density
wave.
Nglobal Nlocal WENO5 CRWENO5

Error Wall Time Error Wall Time NJac

4 (22) processors

642 322 9.5348E-08 1.7501E+03 1.6491E-08 2.0155E+03 4
962 482 1.2567E-08 3.8659E+03 - - -

16 (42) processors

642 162 9.5348E-08 4.5548E+02 1.6491E-08 5.5194E+02 4
962 242 1.2567E-08 9.9407E+02 - - -
1282 322 2.9831E-09 1.7411E+03 3.2179E-10 2.0190E+03 4
1922 482 3.9294E-10 3.8507E+03 - - -

64 (82) processors

642 82 9.5348E-08 1.3187E+02 1.6491E-08 1.9005E+02 4
962 122 1.2567E-08 2.8053E+02 - - -
1282 162 2.9831E-09 4.8237E+02 3.2179E-10 5.9309E+02 4
1922 242 3.9294E-10 1.0530E+03 - - -
2562 322 9.3256E-11 1.8441E+03 1.5378E-11 2.1623E+03 4
3842 482 1.2283E-11 4.0651E+03 - - -

256 (162) processors

642 82 9.5348E-08 3.9429E+01 1.6491E-08 1.0810E+02 8
962 122 1.2567E-08 7.8243E+01 - - -
1282 82 2.9831E-09 1.3111E+02 3.2179E-10 2.0306E+02 6
1922 122 3.9294E-10 2.7799E+02 - - -
2562 162 9.3256E-11 4.7979E+02 1.5378E-11 5.9089E+02 4
3842 242 1.2283E-11 1.0534E+03 - - -

1024 (322) processors

1282 82 2.9831E-09 3.9085E+01 3.2179E-10 1.1225E+02 10
1922 122 3.9294E-10 7.8295E+01 - - -
2562 82 9.3256E-11 1.3047E+02 1.5378E-11 2.0881E+02 8
3842 122 1.2283E-11 2.9004E+02 - - -

4096 (642) processors

2562 82 9.3256E-11 3.8878E+01 1.5378E-11 1.2383E+02 12
3842 122 1.2283E-11 7.7495E+01 - - -

the initial solution given by

ρ = ρ0 + ρ̃ sin (2πx) cos (2πy) ,

u = 1, v = 1, p = 1/γ, (30)

on a periodic two-dimensional domain [0, 1]× [0, 1]. The mean density is ρ0 = 1, the amplitude of the density
wave is ρ̃ = 0.1, and γ = 1.4 is the ratio of specific heats. Solutions are obtained with the WENO5 and
CRWENO5 schemes on 642, 1282, and 2562 grids (baseline grids); in addition, solutions are obtained with
the WENO5 scheme on grids that are 1.5 times as fine in each dimension (962, 1922, and 3842). This is
a smooth problem, and the CRWENO5 scheme reduces to the linear fifth-order compact scheme. A small
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(a) Wall time vs. number of processors (b) Efficiency vs. subdomain size

Figure 13: Two-dimensional advection of density sine wave – Wall times and efficiencies of the WENO5 and
CRWENO5 schemes on grids with 642, 962, 1282, 1922, 2562, and 3842 points (data in Table 4).

time-step size of 10−4 is taken to keep time discretization errors to a minimum, and the solution is evolved
for half a time period.

Table 4 shows the L2 norm of the errors and wall times for the solutions obtained on the different grid
sizes (Nglobal) and subdomain sizes (Nlocal). It is verified that both the schemes show fifth-order convergence
for this two-dimensional smooth problem. The CRWENO5 scheme yields solutions with errors that are
an order of magnitude lower than that of the WENO5 scheme on the same grid. The accuracy of the
CRWENO5 scheme is comparable to the WENO5 scheme on grids that are 1.5 times as fine in each dimension.
These observations are consistent with the Taylor series analysis of these schemes. The difference in the
computational efficiencies of the WENO5 and CRWENO5 is starker in two dimensions than in one dimension.
It is also verified that the errors in the solutions for a given grid size are identical for all the subdomain sizes,
thus ensuring that the parallel implementation introduces no errors. The number of Jacobi iterations needed
to ensure this increases as the subdomain size decreases.

We compare the wall times for the CRWENO5 scheme on the baseline grids with the WENO5 scheme on
the 1.52x finer grids. Similar to the one-dimensional results, the CRWENO5 scheme is less expensive than
the WENO5 scheme for larger subdomain sizes. As the subdomain size decreases, the number of Jacobi
iterations and consequently the cost of the CRWENO5 scheme increase. Thus, below a critical subdomain
size, the CRWENO5 scheme is more expensive than the WENO5 scheme. For example, for the CRWENO5
scheme on the 642-points grid and the WENO5 scheme on the 962-points grid, the CRWENO5 scheme is more
efficient for 4, 16, and 64 processors (subdomain sizes of 322, 162, and 82) but less efficient for 256 processors
(subdomain size of 42). Similarly, for the CRWENO5 scheme on the 2562-points grid and the WENO5 scheme
on the 3842-points grid, the CRWENO5 scheme is less expensive on 64, 256, and 1024 processors (subdomain
sizes of 322, 162, and 82) but more expensive on 4096 processors (sub-domain size of 42). These observations
are reiterated through Figure 13(a), where the wall times are shown as a function of the number of processors
for the CRWENO5 and WENO5 schemes of comparable accuracy. We observe that for all the grid sizes
considered, CRWENO5 is more efficient until a subdomain size of 82 points per processor; it is less efficient
for smaller subdomains. Figure 13(b) shows the efficiency of the CRWENO5 and the WENO5 schemes as
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(a) 2562 grid points (b) 20482 grid points

Figure 14: Energy spectrum of the numerical solutions to the two-dimensional advection of density
fluctuations.

a function of the sub-domain size. CRWENO5 is observed to be less efficient than WENO5 scheme for
subdomain sizes smaller than a critical value, and this critical subdomain size is insensitive to the global grid
sizes (as was observed for the one-dimensional problems as well). We also observe that in two dimensions,
the CRWENO5 scheme is more efficient until a smaller subdomain size per dimension, namely, 8 points per
processor per dimension, as opposed to 64 points per processor for one dimension.

The performance of the schemes is assessed for the two-dimensional advection of density fluctuations with
a prescribed energy spectrum. The density fluctuations in the initial solution are prescribed in the Fourier
space as follows:

ρ̂(kx, ky) =
ρ̃ |k|−5/6

√
2

(1 + i) ; |k| =
√
k2
x + k2

y; 1 ≤ kx, ky ≤ N/2, (31)

where N is the number of points per dimension on a square grid (the complex conjugates are taken in the
remainder of the domain kx, ky > N/2 to ensure that the fluctuations in the physical space are real). The
initial density, velocity, and pressure are then prescribed as

ρ = ρ0 + δρ,

u = 1, v = 1, p = 1/γ, (32)

where δρ(x, y) is the inverse Fourier transform of ρ̂(kx, ky). The maximum amplitude of fluctuations ρ̃ is
taken as 10−2 to ensure that the total density is non-negative. The two-dimensional domain is [0, 1]× [0, 1]
and periodicity is enforced at all boundaries.

The problem is studied at two baseline grid sizes, 2562 and 20482 points, to show that the critical
subdomain size is independent of the problem size. Solutions are obtained at t = 0.1T , where T is the time
period with time-step sizes of 2× 10−4 and 2× 10−5, respectively for the two baseline grids. Figure 14 shows
the energy spectrum of the solutions obtained by the WENO5 and CRWENO5 schemes on the 2562 and
20482 grids. Also shown is the spectrum of the solutions obtained by the WENO5 scheme on grids with 3202

and 25602 points. One can see that the spectral resolution of the CRWENO5 scheme on the baseline grids is
comparable to that of the WENO5 scheme on the grids with 1.252 times more points. Table 5 shows the
wall times for the WENO5 and CRWENO5 schemes on the baseline grids (2562 and 20482) as well as the
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Table 5: Wall times (in seconds) for the two-dimensional advection of density fluctuations.

Nproc Nlocal Wall times NJac

WENO5 WENO5(F) CRWENO5 CRWENO5

2562 grid points

4 1282 (1602) 2.7048E+03 4.2190E+03 3.0583E+03 0
16 642 (802) 6.9221E+02 1.0787E+03 7.7876E+02 0
64 322 (402) 1.8919E+02 2.9329E+02 2.1905E+02 2
256 162 (202) 4.9332E+01 7.6092E+01 6.1110E+01 4
1024 82 (102) 1.3410E+01 2.2011E+01 2.0199E+01 6
4096 42 (52) 4.1890E+00 5.9152E+00 9.3200E+00 6

20482 grid points

256 1282 (1602) 2.9113E+03 4.5533E+03 3.3723E+03 0
1024 642 (802) 7.4115E+02 1.1608E+03 8.6077E+02 2
4096 322 (402) 1.8899E+02 2.9354E+02 2.2130E+02 4
16384 162 (202) 5.2870E+01 8.3077E+01 6.0775E+01 6

Number in parentheses is the Nlocal for the WENO5 scheme on the finer grid (“WENO5(F)”)

Figure 15: Two-dimensional advection of density fluctuations – Efficiency as a function of the subdomain for
the WENO5 and CRWENO5 schemes on grids with 2562, 3202, 20482, and 25602 points (data in Table 5).

WENO5 scheme on the 3202 and 25602 points in column “WENO5(F.)” The number of processors (Nproc)
and the corresponding subdomain sizes (Nlocal are reported in the first two columns, and the number of
Jacobi iterations (NJac) required by the CRWENO5 scheme is reported in the last column. We observe that
for the baseline grid of 2562 points, the CRWENO5 and HCWENO5 schemes are less expensive than the
WENO5 scheme until a subdomain size of 8 points per dimension per processor. The WENO5 scheme is more
efficient for subdomain sizes lower than this because of the increasing cost of the tridiagonal solver. Because
of hardware restrictions, the case with the baseline grid of 20482 points could not be studied at subdomain
sizes smaller than 162 points. We observe that the CRWENO5 scheme is significantly more efficient than
the WENO5 scheme for all the subdomain sizes considered for this case. Figure 15 shows the efficiency as
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Table 6: Errors (L2) and wall times (in seconds) for the three-dimensional advection of a sinusoidal density
wave.
Nglobal Nlocal WENO5 CRWENO5

Error Wall Time Error Wall Time NJac

64 (43) processors

323 83 4.0388E-06 4.1216E+03 5.4544E-07 5.0583E+03 10
483 123 5.3211E-07 1.2960E+04 - - -

512 (83) processors

323 43 4.0388E-06 6.0777E+02 5.4544E-07 9.3257E+02 10
483 63 5.3211E-07 1.8179E+03 - - -
643 83 1.2639E-07 4.0552E+03 1.4849E-08 4.9851E+03 10
963 123 1.6660E-08 1.2884E+04 - - -

4096 (163) processors

643 43 1.2639E-07 6.0635E+02 1.4849E-08 9.3614E+02 10
963 63 1.6660E-08 1.8033E+03 - - -
1283 83 3.9549E-09 4.0209E+03 4.3038E-10 4.9291E+03 10
1923 123 5.2096E-10 1.2819E+04 - - -

32768 (323) processors

1283 43 3.9549E-09 6.5648E+02 4.3038E-10 9.4118E+02 10
1923 63 5.2096E-10 1.9532E+03 - - -

a function of the subdomain size for the CRWENO5 and WENO5 schemes, and the previous observations
are reiterated. Although the wall times and efficiencies are not available for smaller subdomain sizes on the
20482 and 25602 point grids, the efficiencies for the CRWENO5 and WENO5 schemes show a trend similar to
that observed on the 2562 and 3202 point grids.

We also investigated the performance of the schemes for three-dimensional problems. Similar to the
two-dimensional problems, the tridiagonal solver is expected to be highly efficient for three-dimensional
problems by solving several systems of equations together (thus maximizing communication efficiency). In
addition, the difference in the computational efficiencies for the WENO5 and CRWENO5 schemes is further
amplified by the dimensionality—the WENO5 scheme requires a grid with 1.53 times more points than the
compact schemes for smooth problems. Thus, the critical subdomain size for the compact schemes is expected
to be smaller per dimension for three-dimensional problems. We consider a smooth problem with the initial
solution specified as follows:

ρ = ρ0 + ρ̃ sin (2πx) sin (2πy) sin (2πz) ,

u = 1, v = 1, w = 1, p = 1/γ, (33)

where the mean density is ρ0 = 1 and the amplitude of the wave is ρ̃ = 0.1. The specific heat ration is γ = 1.4.
Solutions are obtained with the CRWENO5 and WENO5 schemes on 323, 643, and 1283 grids (baseline); in
addition, solutions are obtained with the WENO5 scheme on 483, 963, and 1923 grids. A time-step size of
5× 10−5 is taken to minimize errors due to time discretization, and solutions are obtained at half a time
period.

Table 6 reports the errors (L2 norm) and wall times for the grid sizes (Nglobal) and subdomain sizes
(Nlocal) considered. The choice of cases is constrained by hardware and job scheduling limits on the computing
platform. Both the WENO5 and CRWENO5 schemes show fifth-order convergence as expected, and the
errors in the solutions obtained by the CRWENO5 scheme are an order of magnitude lower than those in
the solutions obtained by the WENO5 scheme. We compare the numerical cost of the CRWENO5 scheme
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on the baseline grids (323, 643, and 1283 points) with that of the WENO5 scheme on the grids with 1.53

times the number of points (483, 963, and 1923) since these cases yield solutions of comparable accuracy.
It is observed that for all the cases considered, the CRWENO5 scheme is less expensive than the WENO5
scheme for solutions of comparable accuracy, including the smallest subdomain size of 43 points per processor.
The number of Jacobi iterations (NJac in Table 6 is identical (10) for all the cases reported. Although ten
subiterations is more than the minimum number of Jacobi iterations required for machine-zero convergence,
especially for the cases with a subdomain size of 83 points, the CRWENO5 scheme is less expensive by a
relatively large margin,‘ and this allows us to specify a more-than-adequate number of iterations. Thus, all
the cases reported carried out 10 Jacobi iterations to solve the reduced tridiagonal system.

(a) 323 grid points (b) 1283 grid points

Figure 16: Energy spectrum of the numerical solutions to the three-dimensional advection of density
fluctuations.

Table 7: Wall times (in seconds) for the three-dimensional advection of density fluctuations.

Nproc Nlocal Wall times NJac

WENO5 WENO5(F) CRWENO5 CRWENO5

323 grid points

8 163 (203) 2.9409E+03 5.6461E+03 3.3439E+03 8
64 83 (103) 4.3216E+02 8.1914E+02 5.2010E+02 8
512 43 (53) 6.4237E+01 1.1666E+02 9.2764E+01 8

1283 grid points

8 643 (803) 6.4556E+05 1.2562E+06 7.9542E+05 8
64 323 (403) 8.9239E+04 1.7233E+05 1.0331E+05 8
512 163 (203) 1.2272E+04 2.3489E+04 1.4651E+04 8
4096 83 (103) 1.7224E+03 3.2696E+03 2.0835E+03 8
32768 43 (53) 2.5811E+02 4.7065E+02 3.7761E+02 8

Number in parentheses is the Nlocal for the WENO5 scheme on the finer grid (“WENO5(F)”)
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The performance of the schemes for the periodic advection of density fluctuations with a specified energy
spectrum is studied by prescribing the initial fluctuations in the Fourier space:

ρ̂(kx, ky, kz) =
ρ̃ |k|−5/6

√
2

(1 + i) ; |k| =
√
k2
x + k2

y + k2
z ; 1 ≤ kx, ky, kz ≤ N/2, (34)

where N is the number of points per dimension on a square grid and the complex conjugates are taken in the
remainder of the wavenumber domain.. The initial density, velocity, and pressure are

ρ = ρ0 + δρ,

u = v = w = 1, p = 1/γ, (35)

where δρ(x, y, z) is the inverse Fourier transform of ρ̂(kx, ky, kz). The maximum amplitude of fluctuations
ρ̃ is taken as 10−5 to ensure that the total density is non-negative. A periodic three-dimensional domain
([0, 1]3) is taken.

Solutions are obtained for two baseline grids—323 and 1283 points—with the WENO5 and CRWENO5
schemes. Time-step sizes of 10−3 and 2.5× 10−4 are taken for the two grids, respectively, and the solution is
evolved for one time period. In addition, corresponding to the two baseline grids, solutions are obtained on
grids with 403 and 1603 points with the WENO5 scheme with the same time step sizes. Figure 16 shows the
energy spectrum of the numerical solutions obtained with the CRWENO5 and WENO5 schemes. One can see
that for both the baseline grids the CRWENO5 scheme exhibits a spectral resolution on the baseline grids
(323 and 1283 points) that is comparable to that of the WENO5 scheme on grids with 1.253 more points
(403 and 1603). Table 7 reports the wall times for the cases (Nproc is the number of processors and Nlocal is
the corresponding subdomain size). The CRWENO5 scheme is significantly more efficient than the WENO5
scheme for all the cases considered. The reported number of Jacobi iterations (NJac) is identical (8) for all
the cases and is more than adequate to ensure machine-zero convergence. The performance margin between
the WENO5 scheme and the compact schemes is relatively large; and despite a large (possibly redundant)
number of Jacobi iterations, the compact schemes are less expensive. Figure 17(a) shows the wall times as a
function of the number of processors for the WENO5 and CRWENO5 schemes. The CRWENO5 scheme is
less expensive than the WENO5 scheme for all the cases at both the grid sizes considered. Figure 17(b) shows
the efficiency as a function of the subdomain sizes. One can see that the CRWENO5 scheme is more efficient
than the WENO5 scheme even at the smallest subdomain size of 64 (43) points per processor (53 points
for WENO5). It should be noted that fifth-order schemes such as CRWENO5 and WENO5 require three
ghost points along each dimension for data exchange between neighboring subdomains, and thus subdomains
smaller than 43 points are not practical.

The numerical experiments presented in this section demonstrate that our implementation of the parallel
tridiagonal solver does not introduce any parallelization-related errors if the reduced system is solved to
machine-zero convergence. The diagonal dominance of the reduced system ensures that this is possible
within a reasonable number of iterations. Unlike previous approaches [13, 38], our method yields solutions on
multiprocessors that are identical to those obtained on a single processor. The mathematical complexity of
the tridiagonal solver is comparable to that of the Thomas algorithm on the single processor. In addition,
our algorithm avoids collective communications as well as the huge communication requirements of the
transposition approach [16, 29]. A larger number of processors for a given problem size (consequently smaller
subdomains) result in reduced diagonal dominance of the reduced system and a larger number of Jacobi
iterations needed to ensure convergence. The relative cost of the tridiagonal solver thus increases with the
number of processors. CRWENO5 is more efficient than WENO5 for subdomain sizes larger than a critical
size, below which the cost of the tridiagonal solver renders them more expensive. This is shown for one and
two spatial dimensions. This critical subdomain size is observed to be independent of the global problem
size, and thus this algorithm can be scaled up for larger problems on a correspondingly larger number of
processors.

Numerical experiments in three space dimensions show that the CRWENO5 scheme is more computation-
ally efficient for the smallest practical subdomain sizes possible—43 points per processor. One can see from
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(a) Wall time vs. number of processors (b) Efficiency vs. sub-domain size

Figure 17: Three-dimensional advection of density fluctuations – Wall times and efficiencies of the WENO5
and CRWENO5 schemes on grids with 323, 403, 1283, and 1603 points (data in Table 7).

the wall times and efficiencies that, although the parallel implementation of the CRWENO5 scheme does
not scale as well as the noncompact WENO5 scheme, the absolute numerical cost is still lower than that
of the WENO5 scheme on a finer grid that yields solutions of comparable accuracy and resolution. That
is, for a given number of processor, it is less expensive to use the CRWENO5 scheme to obtain a solution
of the desired accuracy or resolution. We can thus claim that our implementation of the compact schemes
for three-dimensional problems is more efficient for the entire range of parallelization, including massively
parallel fine-grained simulations.

4 Results

The previous section analyzed the numerical performance of the parallel CRWENO5 scheme through
manufactured solutions involving the advection of density waves. The performance of the overall algorithm is
evaluated in this section on benchmark flow problems representative of practical flows. Previous studies on
the CRWENO5 scheme [25–27] demonstrated two desirable benefits compared with the standard WENO5
scheme apart from sharper resolution of discontinuities: accurate preservation of flow features as they convect
large distances and improved resolution of a larger range of relevant length scales for turbulent flows. The
two flow problems in this section—the long-term convection of an isentropic vortex and the decay of isotropic
turbulence—illustrate these properties. Moreover, the computational efficiency of the CRWENO5 scheme on
multiple processors is demonstrated for these flows.

The computations presented in this section are carried out on Mira, a Blue Gene/Q system maintained by
the ALCF [1]. The system has 491, 52 compute nodes, each with a 16-core 1600 MHz PowerPC A2 processor.
Each core can support 4 hardware threads. Each node has a 16 GB RAM and the overall system has a
peak performance of 10 petaflops. Our choice of test cases and problem sizes attempts maximum possible
utilization of these resources within the constraints of our project allocation.
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(a) CRWENO5 - 8192 × 64 × 64 grid
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Figure 18: Isentropic vortex convection: density contours after vortex has traveled a distance 1, 000 times
its core radius.

4.1 Isentropic Vortex Convection

The isentropic vortex is an exact solution of the inviscid Euler equations [58] and convects with the freestream
flow with its shape and strength preserved. The numerical simulation of the long-term convection of the
isentropic vortex tests the ability of the algorithm to preserve a flow feature for large simulation times. The
vortex is a two-dimensional flow; however, we solve this flow over a three-dimensional domain to demonstrate
the computational cost and efficiency of the three-dimensional solver. Periodic boundary conditions are
imposed along the third (normal) dimension. It was demonstrated previously [27] that the CRWENO5 scheme
shows a significant improvement in the preservation of the strength and shape of the vortex as it convects
over a large distance (1000 times the core radius). These results were obtained on a small, two-dimensional
domain (with edge length as 10 times the core radius) with periodic boundary conditions ensuring that the
vortex traveled the length of this domain for several cycles.

In this study, we consider a large domain along the direction of vortex convection, in order to evaluate
the strong and weak scaling of the parallel algorithm for a large number of grid points and correspondingly
large number of processors. The freestream flow is specified as ρ∞ = 1 (density), u∞ = 0.5 (x-velocity),
v∞ = w∞ = 0 (y and z velocities), and p∞ = 1 (pressure). The initial vortex is specified as

ρ =

[
1− (γ − 1)b2

8γπ2
e1−r2

] 1
γ−1

,

δu = − b

2π
e

1−r2
2 (y − yc) ,

δv =
b

2π
e

1−r2
2 (x− xc) ,

δw = 0, p = ργ , (36)

where δu, δv, and δw are the velocity perturbations, (xc, yc) = (5, 5) is the initial location of the vortex
center, r = (x2 + y2)1/2 is the radial distance from the vortex center, and b = 0.5 is the vortex strength. The
flow is uniform along the z dimension. Periodic boundary conditions are specified on all boundaries.

The strong scaling of the algorithm is evaluated by solving the flow on a domain of length 1280R×10R×10R
(where R = 1 is the vortex core radius), discretized by a grid with 8192 × 64 × 64 points. Solutions are
obtained with the CRWENO5 and WENO5 schemes. In addition, solutions are obtained with the WENO5
scheme on a grid with 12288× 96× 96 points. The vortex is allowed to convect a distance of 1000 times the
core radius. The solution is integrated in time by using the third-order accurate strong-stability-preserving
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Figure 19: Isentropic vortex convection: cross-sectional pressure after vortex has traveled a distance 1, 000
times its core radius, and pressure error at vortex center as a function of time.

Runge-Kutta (SSPRK3) scheme [32] with a time-step size of 0.025 units. Figure 18 shows the density contours
of the flow for the solutions obtained with the WENO5 and CRWENO5 schemes. One can see that the
solution obtained by the WENO5 scheme on the 8192× 64× 64 point grid is dissipated, while the CRWENO5
scheme yields a solution comparable to that obtained by the WENO5 scheme on the 12288× 96× 96 point
grid. This is reiterated in Figure 19(a), which shows the cross-sectional pressure through the vortex core.
Figure 19(b) shows the error in the vortex core pressure (normalized by the initial core pressure) as a function
of the distance traveled. These figures demonstrate that the CRWENO5 scheme yields solutions that are
comparable to that of the WENO5 scheme on a grid with 1.53 times more points.

We thus compare the wall times of the CRWENO5 scheme on the 8192× 64× 64 points grid with those of
the WENO5 scheme on the 12288× 96× 96 points grid. The number of Jacobi iterations for the CRWENO5
scheme is fixed at 10 irrespective of the subdomain size. The domain is partitioned along all three dimensions.
Figure 20(a) shows the wall times (for one Runge-Kutta time-integration stage) as a function of the number of
processors. The subdomain sizes range from 43 (63 for WENO5) for 524288 (2048× 16× 16) processors to 163

(243 for WENO5) for 8192 (512× 4× 4) processors. We observe that although the CRWENO5 scheme does
not scale as well as the WENO5 scheme, the absolute wall time is significantly lower. Figure 20(b) compares
the efficiencies of the two schemes as a function of the subdomain size. The efficiency of the CRWENO5
scheme decreases rapidly as the subdomain size decreases; however, in absolute terms, the CRWENO5 is
significantly more efficient than the WENO5 scheme even for the smallest subdomain size.

Figure 20(c) shows the Runge-Kutta stage wall times of the CRWENO5 and WENO5 scheme for constant
subdomain sizes of 43 and 63 points, respectively, as the number of grid points and the number of processors
are increased by the same factors. These results are obtained by varying the physical length, number of points,
and number of processors along the direction of vortex convection while keeping these quantities along the
other two dimensions constant. We initially start with a domain of size 40R×10R×10R, discretized by a grid
with 256× 64× 64 points (384× 96× 96 points for WENO5) on 16, 384 (64× 16× 16) processors and increase
the quantities in the x-dimension by a factor of two till a domain of size 1280R × 10R × 10R, discretized
by a grid with 8192 × 64 × 64 points (12288 × 96 × 96 points for WENO5) on 524, 288 (2048 × 16 × 16)
processors. The wall times for the CRWENO5 scheme are significantly lower than those of the WENO5
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(a) Strong scaling: Wall times (b) Strong Scaling: efficiency

(c) Weak scaling

Figure 20: Isentropic vortex convection: wall times and parallel efficiencies for the CRWENO5 and WENO5
schemes.

scheme. The parallel implementation of the tridiagonal solver involves only point-to-point communications
between processors and thus, an excellent weak scaling is observed. We can conclude that the CRWENO5
scheme will remain more efficient than the WENO5 scheme as the problem size and the number of processors
increase further.

4.2 Isotropic Turbulence Decay

The decay of an isotropic turbulent flowfield [46,55] is a benchmark problem characterized by a transfer of
energy from larger to smaller length scales. An initial solenoidal velocity field is specified that satisfies a
prescribed kinetic energy spectrum, and this problem tests the ability of the algorithm to model moderate
and small length scales accurately. In addition, the flow is compressible for higher values of the turbulent
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(a) 643 grid

(b) 2563 grid

Figure 21: Isotropic turbulence decay: Energy spectrum at t = 3.0 for solutions obtained by the WENO5
and CRWENO5 schemes.

fluctuations, and a non-oscillatory scheme is required. Previous studies [25,26] have demonstrated through
direct numerical simulation that the CRWENO5 scheme yields solutions with higher resolution of moderate
and high wavenumbers. In the present study, an implicit large-eddy simulation [65] is presented where the
inviscid Euler equations are solved and the numerical viscosity provides the sub-grid model.

The physical domain is a periodic cube with edge length 2π units, and the initial velocity field is specified
in the Fourier space such that its divergence is zero and the kinetic energy spectrum satisfies [25,41]:

E(k) = 16

√
2

π

u2
0

k0

(
k

k0

)4

exp

[
−2

(
k

k0

)2
]
, (37)

where E is the kinetic energy, k is the wavenumber, k0 = 4 is the wavenumber corresponding to the maximum
kinetic energy, and u0 = 0.2

√
2 is the RMS turbulence intensity. Constant initial density and pressure are

specified (ρ = 1 and p = 1/γ). The problem is solved with the WENO5 and CRWENO5 schemes on two
grids—643 and 2563 points—and with the WENO5 scheme on grids that are 1.253 times as fine (803 and
3203 points). The number of Jacobi iterations for the tridiagonal solver in the CRWENO5 scheme is fixed at
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(a) Strong Scaling: Wall times (b) Strong Scaling: Efficiency

(c) Weak Scaling

Figure 22: Isotropic turbulence decay: wall times and parallel efficiencies for the CRWENO5 and WENO5
schemes.

10. The solutions are integrated in time with the fourth-order Runge-Kutta scheme until a time of 3.0 with
time-step sizes of 0.01 and 0.002 for the coarse and fine grids, respectively. Figure 21 shows the kinetic energy
as a function of the wavenumber for the solutions obtained, including zoomed plots showing the moderate
and small length scales. We observe that at both problem sizes, the solution obtained with the CRWENO5
scheme has a spectral resolution comparable to that obtained with the WENO5 scheme on the grid that is
1.253 times finer. We thus evaluate the computational efficiency of the CRWENO5 scheme by comparing it
with that of the WENO5 scheme on a finer grid.

Figure 22(a) shows the wall times (for one Runge-Kutta time-integration stage) for the CRWENO5
scheme on the 2563 points grid and the WENO5 scheme on the 3203 points grid. The subdomain sizes vary
from 43 (53 for WENO5) points for 262, 144 (643) processors to 323 (403 for WENO5) points on 512 (84)
processors. Figure 22(b) shows the efficiencies of the CRWENO5 and WENO5 schemes as a function of
the subdomain sizes. One can see from both plots that the CRWENO5 scheme does not scale well at small
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subdomain sizes; however, it remains more efficient than the WENO5 scheme. Thus, the CRWENO5 scheme
is less expensive than the WENO5 scheme for obtaining comparable solutions, even at the smallest subdomain
size of 43 points per processor. Figure 22(c) shows the Runge-Kutta stage wall times of the CRWENO5
and WENO5 schemes with constant subdomain sizes of 43 and 53 points per processor, respectively. The
problem sizes vary from 323 (403 for WENO5) points on 83 processors to 2563 (3203 for WENO5) points
on 643 processors. The CRWENO5 scheme is observed to scale well and remains less expensive than the
WENO5 scheme as the problem size increases.

5 Conclusions

We present scalable and efficient nonlinear compact schemes in this study by implementing a parallel
tridiagonal solver. The solver is based on the substructuring or partitioning approach, but we solve the
reduced system iteratively to machine zero accuracy. This is possible because of the diagonal dominance of
the reduced system that represents the weak coupling of the finite-difference operators between the interface
points in neighboring sub-domains. With the initial guess as the solution of the corresponding diagonal
system, machine-zero convergence requires few iterations. The diagonal dominance reduces as the subdomain
size shrinks (with increasing processors for the same problem size), and consequently the number of iterations
required increases. Thus, the relative cost of the compact schemes increases as the subdomain size decreases.
The iterative solution of the reduced system does not use a norm-based exit criterion; instead the number of
Jacobi iterations is fixed a priori. Thus, the overall solver avoids any collective communications and involves
only point-to-point communications between neighboring processors.

We analyze the performance of the CRWENO5 scheme with manufactured solutions involving the
advection of density waves, In one and two spatial dimensions, we observe a critical subdomain size: above
this size, the compact schemes are more efficient than the corresponding WENO scheme with comparable
accuracy and resolution; below this size, it is less expensive to obtain a solution of comparable accuracy
with the WENO scheme on more number of grid points. We demonstrate that this critical subdomain size is
insensitive to the global problem size; we thus conclude that the algorithm will have a similar performance
on larger problem sizes with correspondingly larger number of processors. The higher efficiency of the
compact schemes is amplified by the dimensionality for three-dimensional problems, and they are shown
to be more efficient than the WENO scheme for the smallest subdomain sizes considered (43 points per
processor). Although the number of Jacobi iterations is fixed a priori based on an empirical estimate, the
difference in the computational efficiencies of the CRWENO5 and WENO5 is large enough to allow specifying
a large (possibly redundant) number of Jacobi iterations. Since fifth-order schemes such as the CRWENO5
and WENO5 require at least three ghost points on each physical and parallel-decomposition boundary for
data exchange, a subdomain size of 43 points is close to the practical lower limit. This implementation
of the CRWENO5 renders it more efficient for the entire range of parallelizations—from coarse-grained to
fine-grained simulations.

The parallel implementation of the CRWENO5 scheme is evaluated on two physically relevant flow
problems—the isentropic vortex convection and the isotropic turbulence decay. It is verified for these
problems that the WENO5 scheme requires a larger number of grid points than does the CRWENO5 scheme
to yield comparable solutions. The previous conclusions regarding the scaling and computational efficiencies
are demonstrated for these problems on O(105) processors. Strong scaling studies show that although the
CRWENO5 scheme does not scale as well as WENO5 scheme, it remains more efficient in absolute terms.
We also observe through weak scaling results that this implementation remains less expensive as the global
domain size and the number of processors increase.

To summarize, our parallel implementation of the nonlinear compact scheme differs from previous
attempts by satisfying all these conditions: it does not introduce any parallelization-related approximations;
the tridiagonal solver is not significantly more complex than the Thomas algorithm on a single processor;
the algorithm requires only point-to-point communications and no collective communications; it does not
involve any data rearrangement/transposition across processors; and in three (or higher) dimensions it is
more computationally efficient than a standard finite-difference scheme of the same accuracy/resolution for
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the entire range of domain decomposition sizes. The computational properties of this implementation are
independent of the global problem size, and thus it is expected to scale as well for larger problems on larger
number of processors (than what is shown here). These properties are demonstrated through the CRWENO5
scheme; however, this implementation is applicable to other nonlinear compact schemes as well (such as
the hybrid compact-WENO schemes) that require solutions to tridiagonal systems at each time-integration
step/stage.
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