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Compact-reconstruction weighted essentially nonoscillatory schemes have lower dissipation and dispersion

errors as well as higher spectral resolution than weighted essentially nonoscillatory schemes of the same order

of convergence. Numerical experiments on benchmark inviscid flow problems have demonstrated improvements

in the resolution and preservation of flow features such as vortices, discontinuities, and small-length-scale waves.

This paper describes the integration of these schemes with a compressible, unsteady, Reynolds-averaged Navier–

Stokes solver and demonstrates their performance for two- and three-dimensional flow problems. The schemes

are validated and verified for domains discretized by curvilinear and overset grids. Several flow examples

demonstrate improvements in the resolution of boundary-layer and wake-flow features for solutions obtained by the

compact-reconstruction weighted essentially nonoscillatory schemes. The results presented indicate that these

schemes are well suited to aerodynamic problems where high-resolution numerical solutions of the near-body and

wake flowfields are desired.

Nomenclature

A = flux Jacobian
c = optimal weights or airfoil chord
e = internal energy
F = convective flux tensor
Fv = viscous flux tensor
f , g, h = convective flux vector along x, y, z, axis
fv, gv, hv = viscous flux vector along x, y, z axis
i, j, k = grid indices or dimension indices

î, ĵ, k̂ = unit vectors along Cartesian directions
M = Mach number
Pr = Prandtl number
p = pressure
q = thermal conduction
Re = Reynolds number
S = source term
t = time
u = conserved variable vector
u, v, w = velocity along x, y, z axis
X = matrix of eigenvectors
x, y, z = Cartesian coordinates
β = smoothness indicators
δ = Kronecker delta function
Λ = matrix of eigenvalues
μ = coefficient of viscosity
ρ = density
τ = viscous stress
ω = weighted essentially nonoscillatory weights

I. Introduction

T HE Navier–Stokes equations govern the dynamics of viscous,
compressible flows [1] and constitute a system of nonlinear

hyperbolic–parabolic conservation laws. Solutions to these equations
are composed of waves traveling at their characteristic speeds. The
nonlinearity of the convective terms implies that solutions may admit
discontinuities and steep gradients such as shock waves and shear
layers. Numerical schemes for the Navier–Stokes equations need to
respect thewave nature of the solution as well as ensure nonoscillatory
behavior across discontinuities. Several such methods have been
proposed in the literature [1,2] and applied to aerodynamic flows. The
focus of this paper is the high-resolution numerical solution to
aerodynamic flows characterized by a large range of length scales,
where, in addition to the accurate prediction of integrated forces, a
well-resolved solution to the flowfield is desired as well.
The essentially nonoscillatory (ENO) schemes [3] use adaptive

stenciling to avoid oscillations across discontinuities by choosing
the smoothest interpolation stencil amongst the candidates. The
implementation of the ENO schemes was improved and extended
[4,5] and applied to several benchmark flow problems. Theweighted
essentially nonoscillatory (WENO) schemes [6] replaced the selec-
tion procedure of the ENO schemes with a weighted combination of
the candidate interpolation schemes and achieved a higher order of
accuracy for the same computational expense. The WENO schemes
were improved [7] such that they achieved (2r − 1)th-order accuracy
corresponding to the rth-order ENO scheme. WENO schemes of
very high orders of accuracy have been constructed and applied to
benchmark flow problems [8]. Improvements to the nonlinear
weights [9–11] addressed several drawbacks, such as suboptimal
convergence for a class of smooth solutions as well as excessive
dissipation across discontinuities. The WENO schemes have been
applied to a large range of flow problems and other physical systems
governed by hyperbolic conservation laws [12].
One of the primary drawbacks of high-orderWENO schemes (and

other noncompact schemes) is the low spectral resolution, and this is a
severe limitation for flows with a large range of length scales.
Compact finite-difference schemes [13] have significantly higher
spectral resolution and lower dissipation and dispersion errors,
compared to noncompact schemes, as well as smaller interpolation
stencils. These schemes have been applied to several incompressible
[14,15] and compressible [16,17] flow problems. Linear compact
schemes result in spurious oscillations across discontinuities, and a
shock-capturing compact scheme with a total variation bounded
limiter was introduced [18] and further improved [19].
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There have been several efforts in the literature that attempt to
construct a nonoscillatory scheme with high spectral resolution by
combining the ENO or WENO schemes and the compact schemes.
The hybrid schemes [20–22] are one such family of schemes, where
the local smoothness of the solution is used to select the ENO or
WENO scheme and a compact scheme. A parameter-free compact-
WENO scheme was proposed [23] where the WENO scheme at
discontinuities acts as internal boundaries to the compact scheme.
One drawback of these approaches is that the schemes revert to a
noncompact scheme (with poor spectral resolution) around dis-
continuities, resulting in a loss of accuracy and resolution. This is
exacerbated for flows with a large number of discontinuities (e.g.,
shocklets) because the hybrid algorithm would select the non-
compact ENO or WENO scheme in the majority of the domain.
Another class of schemes [24,25] involves two stages on a staggered
grid. The first stage interpolates the flux at the interfaces with the
WENO scheme, and the second stage computes higher-order
approximations to the first derivative from the interface values with
central compact schemes. A similar ENO–Padé scheme [26]
achieved higher orders of accuracy at both stages of the recon-
struction step. The spectral resolution of these schemes is only
marginally higher than the WENO schemes because they use a non-
compact scheme to compute the interface fluxes. A weighted com-
pact scheme was constructed [27] that uses a weighted combination
of candidate compact schemes to construct a high-order accurate,
nonoscillatory scheme. The candidate schemes are chosen as third-
and fourth-order compact schemes, and the optimal scheme is a sixth-
order central scheme that is inherently unstable for hyperbolic
problems. The overall scheme was not robust, and further treatments
like an additional filter [28] or hybridization with a noncompact
scheme [29] were necessary to obtain nonoscillatory solutions.
A class of robust, weighted, nonlinear compact schemes have been

introduced [30] that have a high spectral resolution and yield non-
oscillatory solutions across discontinuities. The compact-reconstruction
weighted essentially nonoscillatory (CRWENO) schemes are con-
structed by identifying lower-order compact interpolation schemes at
eachgrid interfaceaswell as correspondingoptimalweights such that the
weighted sum is a higher-order accurate upwind compact scheme.These
optimal weights are replaced by the smoothness-dependent WENO
weights [7] such that they approach their optimal values for smooth
solutions and vanish near discontinuities. The resulting CRWENO
scheme is high-order accurate for smooth flows and nonoscillatory
across discontinuities and steep gradientswithout additional numerical
treatments. Fifth-order CRWENO schemes were constructed [30] and
their numerical properties demonstrated on scalar conservation laws
and the inviscid Euler equations.
The fifth-order CRWENO schemes have several advantages over

the fifth-order WENO scheme. The CRWENO schemes yield
solutions with significantly lower dissipation and dispersion errors;
thus, significant improvements were observed in their ability to
preserve flow features as they convect over large distances. The
higher spectral resolution of the CRWENO schemes substantially
improved the resolution of small-length-scale flow features as well as
extrema and discontinuities. The CRWENO schemes were demon-
strated to be computationally more efficient for scalar conservation
laws and the Euler equations with componentwise reconstruction
of the vector quantities. These improvements in the numerical
properties were demonstrated [30] on the linear advection equations
as well as benchmark one- and two-dimensional inviscid flow
problems on equispaced Cartesian grids. The CRWENO schemes
were applied to the direct numerical simulation of compressible
turbulent flows [31] and yielded solutions with improved resolution
of small and moderate length scales. These results indicate that the
CRWENO schemes are expected to show improvements over the
WENO scheme for flow problems characterized by a large range of
length scales and long-term convection of flow features. This paper
describes the incorporation of the fifth-order CRWENO scheme into
an unsteady, compressible Reynolds-averaged Navier–Stokes solver
for curvilinear and overset grids and its application to several two-
and three-dimensional aerodynamic problems.

The outline of this paper is as follows. Section II describe the
three-dimensional, compressible Navier–Stokes equations in their
nondimensionalized form. The numerical method and the fifth-order
CRWENO scheme are described in Sec. III. Several flow problems
are presented in Sec. IV. The CRWENO scheme is validated for
steady and unsteady flows around two-dimensional airfoils and a
three-dimensional wing and a rotor. The examples presented in this
paper have a large range of length scales, from airfoil chord length or
blade span to boundary-layer thickness or the diameter of shed
vortices. A lower-order numerical scheme is sufficient for the
prediction of integrated forces, but a high-order accurate scheme is
required to obtain a well-resolved solution to the flowfield. The
performance of theCRWENOscheme is assessed and comparedwith
that of the WENO scheme, with the primary focus on the ability to
resolve and preserve small-length-scale flow features such as shed
vortices. Conclusions are drawn in Sec. V.

II. Governing Equations

The three-dimensional, compressible Navier–Stokes equations [1]
are expressed in their nondimensional form as

∂u
∂t
� ∂f

∂x
� ∂g

∂y
� ∂h

∂z
� ∂fv

∂x
� ∂gv

∂y
� ∂hv

∂z
� S (1)

where u is the vector of conserved variables; f , g, and h are the
convective flux vectors; fv, gv, and hv are the viscous flux vectors;
and S is a source term representing body forces. In this paper,
the pseudoforces resulting from formulating the equations in a
noninertial frame are included in the source term. The conserved
variables and the convective flux vectors are

u �

2
66666664

ρ

ρu

ρv

ρw

e

3
77777775
; f �

2
66666664

ρu

ρu2 � p
ρuv

ρuw

�e� p�u

3
77777775
; g �

2
66666664

ρv

ρuv

ρv2 � p
ρvw

�e� p�v

3
77777775
;

h �

2
66666664

ρw

ρuw

ρvw

ρw2 � p
�e� p�w

3
77777775

(2)

and the viscous fluxes are

fv �

2
66666664

0

τxx

τyx

τzx

uτxx � vτyx �wτzx − qx

3
77777775
;

gv �

2
66666664

0

τxy

τyy

τzy

uτxy � vτyy �wτzy − qy

3
77777775
;

hv �

2
66666664

0

τxz

τyz

τzz

uτxz � vτyz �wτzz − qz

3
77777775

(3)
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The equation of state is given by

e � p

γ − 1
� 1

2
ρ�u2 � v2 �w2� (4)

The mean viscous stresses are

τij �
μM∞

Re∞

��
∂ui
∂xj
�

∂uj
∂xi

�
−
2

3

∂uk
∂xk

δij

�
(5)

where Re∞ andM∞ are the freestream Reynolds number and Mach
number, and μ is the nondimensionalized coefficient of laminar
viscosity. The thermal conduction terms are

qi � −
μM∞

Re∞Pr�γ − 1�
∂T
∂xi

(6)

where Pr is the Prandtl number, which is assumed as 0.72 (constant)
for all flow problems in this paper.
Turbulent flows are modeled using the Reynolds-averaged

Navier–Stokes (RANS) formulation [1], and additional terms for the
Reynolds stress tensor are included in the momentum and energy
equations to account for the momentum and energy exchange due
to turbulent fluctuations. In this paper, the one-equation Spalart–
Allmaras turbulence model [32] with the rotational correction [33] is
used to close the system of equations.

III. Numerical Methodology

The unsteady, compressible RANS equations form a hyperbolic–
parabolic system of partial differential equations where the equations
are hyperbolic without the viscous terms and parabolic without the
convective terms. Equation (1) is transformed to its integral form by
integrating over a control volume and applying the Stokes theorem.
The finite-volume formulation [34] is used to discretize it in space,
resulting in an ordinary differential equation in time:

d �u

dt
� 1

V

XNfaces

l�0
Fl · nldSl �

1

V

XNfaces

l�0
Fvl · n̂ldSl � �S (7)

where �u and �S are the volume-averaged conserved variables and
source term in a grid cell (control volume),V is the volume of the grid
cell,Nfaces is the number of discrete interfaces of the grid cell, n̂ is the
unit normal vector for a given interface, and dS is the interface area.
The convective and viscous flux tensors are given by

F � fî� gĵ� hk̂ Fv � fv î� gvĵ� hvk̂ (8)

where î, ĵ, k̂ are the Cartesian unit vectors. Thus, the finite-volume
discretization requires the reconstruction of the convective and
viscous flux vectors at the interfaces from the cell-averaged values.
This is described in more details in the following subsection for the
convective flux vector. The viscous terms are approximated using
second-order central finite-difference approximations. Viscous flow
problems need very finemesh spacing to resolve the boundary layers,
and this results in restrictive stability limits for explicit time-
marching schemes. In this study, Eq. (7) is evolved in time using the
implicit, second-order accurate backward-differencing scheme. The
resulting system of equations is solved using the diagonalized
alternate direction implicit [35,36] or the lower-upper Symmetric
Gauss-Seidel [37,38] schemes. Dual time stepping [39] is used for
time-accurate solutions to unsteady problems.

A. Reconstruction

The three-dimensional domain is discretizedwith a structured grid,
and thus, to solve Eq. (7), the reconstruction step computes the
convective flux at �i� 1∕2; j; k�, �i; j� 1∕2; k�, and �i; j; k� 1∕2�
(cell interfaces) for the �i; j; k�th grid cell (where i, j, k are the grid
indices). The reconstruction of this flux vector at the �i� 1∕2; j; k�th

interface is described in this section and the flux vectors at the
other interfaces are similarly computed. At the interface, a one-
dimensional reconstruction is carried out along the grid coordinate
normal to the interface, independent of the other grid coordinates. In
the following description, the corresponding grid index i is retained,
and the other two indices j, k are dropped. The wave nature of the
hyperbolic convective flux terms is modeled through the process of
upwinding, and theRoe scheme [40]with theHarten entropy fix [3] is
used in this study. The interface flux is expressed as

F̂n;i�1∕2 �
1

2
�F̂Ln;i�1∕2 � F̂Rn;i�1∕2�

−
1

2
jA�ûLi�1∕2; ûRi�1∕2�j�ûLi�1∕2 � ûRi�1∕2� (9)

where Fn � F · n is the flux vector normal to the interface, the hat
denotes the numerical (interpolated) approximation of the corre-
sponding quantities, and

jA�ûLi�1∕2; ûRi�1∕2�j � Xi�1∕2jΛi�1∕2jX−1
i�1∕2 (10)

The eigenvalues Λ and eigenvectors X, X−1 are evaluated normal to
the interface [41] from the Roe-averaged flow quantities at the
interface. The superscripts L and R denote left- and right-biased
interpolated values, respectively, and Eq. (9) requires these inter-
polated values of the flux F̂ and conserved variable û vectors at the
interface (i� 1∕2). In this study, the fifth-order CRWENO scheme
[30] (CRWENO5) is used to interpolate the flux and conserved
variable vectors at the interfaces. The formulation of this compact
scheme is briefly described for a scalar quantity in the following
subsection, and its application to the vector quantities in Eq. (9) is
then discussed. The numerical properties of the CRWENO5 scheme
are comparedwith those of two noncompact schemes: the third-order
MUSCL scheme [42] with Koren’s limiter [43] (MUSCL3), and the
fifth-order WENO scheme [7] (WENO5).

B. Fifth-Order Compact-Reconstruction Weighted Essentially
Nonoscillatory Scheme

The one-dimensional, left-biased interpolation of a scalar function
f�x� using the CRWENO5 scheme is briefly described next and
the corresponding right-biased interpolation scheme can be easily
derived. The extensions to theNavier–Stokes system of equations are
discussed subsequently. The fifth-order CRWENO scheme is con-
structed by identifying three third-order compact interpolation
schemes at a given interface:

2

3
f̂i−1∕2 �

1

3
f̂i�1∕2 �

1

6
�fi−1 � 5fi�; c1 �

2

10
(11)

1

3
f̂i−1∕2 �

2

3
f̂i�1∕2 �

1

6
�5fi � fi�1�; c2 �

5

10
(12)

2

3
f̂i�1∕2 �

1

3
f̂i�3∕2 �

1

6
�fi � 5fi�1�; c3 �

3

10
(13)

The optimal weights ck; k � 1; : : : ; 3 are such that theweighted sum
of these interpolation schemes results in a fifth-order accurate
compact interpolation scheme:

3

10
f̂i−1∕2 �

6

10
f̂i�1∕2 �

1

10
f̂i�3∕2 �

1

30
fi−1 �

19

30
fi �

1

3
fi�1

(14)

TheCRWENO5 scheme is obtained by replacing the optimalweights
ck with nonlinear WENO weights ωk and is thus expressed as
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�
2

3
ω1 �

1

3
ω2

�
f̂i−1∕2 �

�
1

3
ω1 �

2

3
�ω2 � ω3�

�
f̂i�1∕2 �

1

3
ω3f̂i�3∕2

� ω1

6
fi−1 �

5�ω1 � ω2� � ω3

6
fi �

ω2 � 5ω3

6
fi�1 (15)

This results in a tridiagonal system of equations. In the current
implementation, the definition of the nonlinear weights is identical to
that for the WENO schemes [7]. The weights are defined as

ωk �
αkP
k αk

; αk �
ck

�ϵ� βk�p
; i � 1; : : : ; 3 (16)

where ϵ� 10−6 is a small number to prevent division by zero, the
optimal weights ck are defined in Eqs. (11–13), and βk are
smoothness indicators defined as follows:

β1 �
13

12
�fi−2 − 2fi−1 � fi�2 �

1

4
�fi−2 − 4fi−1 � 3fi�2 (17)

β2 �
13

12
�fi−1 − 2fi � fi�1�2 �

1

4
�fi−1 − fi�1�2 (18)

β3 �
13

12
�fi − 2fi�1 � fi�2�2 �

1

4
�3fi − 4fi�1 � fi�2�2 (19)

Although the stencils for the WENO smoothness indicators differ
from those of the CRWENO5 scheme, numerical results presented in
[30] as well as this paper indicate that the resulting scheme is high-
order accurate and nonoscillatory.
Boundary closure for the CRWENO5 scheme is implemented by

extending the domain with ghost cells and applying the WENO5
scheme [7] at the first and last interfaces. Assuming the optimal
values for the weights, this is expressed as

i � 0: f̂1∕2 �
1

30
fG−2 −

13

60
fG−1 �

47

60
fG0 �

27

60
f1 −

1

20
f2 (20)

i � 1; : : : ; N − 1:
3

10
f̂i−1∕2 �

6

10
f̂i�1∕2 �

1

10
f̂i�3∕2

� 1

30
fi−1 �

19

30
fi �

1

3
fi�1 (21)

i� N: f̂N�1∕2 �
1

30
fN−2 −

13

60
fN−1�

47

60
fN �

27

60
fGN�1 −

1

20
fGN�2

(22)

where the superscriptG denotes ghost points, andN is the number of
grid points inside the domain. The conserved variables in the ghost
points are specified in a manner consistent with the physical
boundary conditions, and the corresponding fluxes are known.

C. Discussion

The numerical properties of the fifth-order CRWENO schemewas
studied [30,44] for scalar conservation laws aswell as the Euler equa-
tions. The compact scheme has several advantages over the non-
compact WENO scheme of the same order of convergence. Taylor
series analysis indicate that dissipation and dispersion errors for the
CRWENO5 scheme are 1∕10 and 1∕15 those of theWENO5 scheme
for smooth solutions. Numerical experiments on the linear advection
equation and the inviscid Euler equations demonstrated that the
CRWENO5 scheme yields solutions with significantly lower errors
than the WENO5 scheme for both smooth problems as well as
problems with discontinuities. The higher spectral resolution of the
compact scheme results in lower dissipation and phase errors over a
larger range of length scales. The numerical cost of the CRWENO5
schemewas also analyzed, and though this scheme ismore expensive
than the WENO5 scheme for the same grid size, the lower errors

allow solutions of similar accuracy to be obtained on considerably
coarser grids. In general, the fifth-order CRWENO scheme yields
solutions that are comparable to solutions obtained by the fifth-order
WENO scheme on a grid that is 1.5 times as fine. Thus, the
CRWENO5 scheme was demonstrated to be more efficient through
specific examples [30,44]. Based on these results, the scheme is
applied to practical aerodynamic flow problems in this paper where
the superior numerical properties are expected to yield well-resolved
flowfield solutions.
The scalar interpolation schemes described in the preceding

section can be extended to the vector quantities in Eq. (9) in two
possible ways: componentwise reconstruction and characteristic-
based reconstruction. A characteristic-based reconstruction results
in a more robust numerical scheme and is necessary to yield
nonoscillatory solutions to inviscid flows with strong discontinuities
[7]. However, a studyof the numerical cost of theCRWENO5 scheme
for the inviscid Euler equations [30,44] showed that, although this
scheme is computationally more efficient than the WENO5 scheme
for a componentwise reconstruction, it is not so for a characteristic-
based reconstruction. This is due to the requirement of solving a
block tridiagonal system at each iteration,when the scheme is applied
along the characteristics. However, it was also observed in the case of
the advection of an entropy wave and the convection of an isentropic
vortex that the componentwise reconstruction yielded solutions
identical to the characteristic-based reconstruction. It is shown
through a number of examples in this paper that the componentwise
reconstruction yields accurate solutions in the presence of physical
viscosity and/or in the absence of strong discontinuities, and thus
the CRWENO5 scheme is applicable to such problems. Numerical
results presented in this paper are all obtained by applying the
CRWENO5, WENO5, and MUSCL3 schemes through a compo-
nentwise reconstruction.

D. Application to Overset Grids

Flowproblems in complicated domains are often solved on overset
grids that may have relative motion specified. Numerical algorithms
for such domains need to identify regions for each mesh that contain
field points or are blanked out or marked as an overlap region. The
governing equations are solved on the field points, whereas in the
overlap region, the solution is transferred from a different grid;
the overlap region thus serves as an internal “boundary”. The
blanked-out region (“hole”) is ignored by the solution algorithm and
thus contains nonphysical flow values. This involves a three-step
process: hole-cutting, identification of the blanked-out and overlap
points, and finding donor cells and interpolation coefficients for the
transfer of solution between the grids. In this work, the implicit hole-
cutting algorithm [45] is used to identify the blanked-out and overlap
regions and find donor cells for the receiver cells in the overlap region
of each grid. A bi- or trilinear interpolation is used to compute the
flow values in the overlap region from the solution at the donor cells.
Higher-order interpolation based on Langrangian polynomials and
B-splines has been applied [46] because the second-order inter-
polation compromises the accuracy of the global solution. Thus, one
future direction of work is the implementation of these higher-order
interpolation schemes in the current algorithm.
The implementation of noncompact spatial reconstruction schemes

to overset grids is relatively straightforward. The numerical algorithm
does not solve the governing equations on the blanked-out points, and
the flow values at these points are nonphysical. However, field points
are insulated from these blanked-out points through the overlap
region, whose thickness corresponds to the stencil width of the spatial
reconstruction scheme. Thus, the nonphysical flow values in the
blanked-out region do not contaminate the reconstruction step at the
field points. However, the implementation of a compact scheme is not
straightforward. A compact scheme results in a coupled formulation
for the unknown interface fluxes; for example, Eq. (14) or Eq. (15)
represents tridiagonal systems of equations. As a result, the unknown
fluxes at the interfaces inside the blanked-out region are coupled to
those in the field region. Thus, the application of compact schemes to
overset grids requires some special treatment to effectively decouple
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the system of equations from the variables inside the blanked-out
region. One approach to this is the application of biased compact
interpolation schemes at points near the hole boundaries [46], thereby
decoupling the global system of equations from the grid points in
the holes.
The CRWENO5 scheme achieves this decoupling through the

same solution-dependent stencil-selection mechanism that avoids
discontinuities. Examination of Eq. (15) shows that, when theweight
corresponding to the constituent third-order schemewith a discontinuity
in its stencil goes to zero, the scheme reduces to a bidiagonal equation
for that interface, biased away from the discontinuity. This results in a
decoupling of the system of equations across each discontinuity [44],
thus avoiding oscillations. It is expected that the nonphysical values
inside the blanked-out region will cause the CRWENO5 scheme to see
its boundary as a discontinuity. Therefore, theweights corresponding to
the third-order schemes with stencils crossing into the hole region will
go to zero, resulting in a bidiagonal scheme biased away from the
blanked-out points. This will effectively decouple the reconstruction at
the field points from the hole region, thus preventing contamination.
Thus, the CRWENO5 scheme is expected to be applicable to overset
gridswithout additionalmodifications. This is verified for both two- and
three-dimensional flows in Secs. IV.B, IV.E.

E. Parallelization

Section IV.E considers a three-dimensional domain with ∼3
million points, and the solutions are obtained onmultiple processors.
The implementation in this paper uses a splitting approach [47]where
the global systemof equations (resulting from the compact scheme) is
replaced by independent systems in each local subdomain. This is
possible by applying the noncompact WENO scheme (of the same
order of accuracy) at the parallel-partitioning boundaries. One major
drawback of this approach is that the numerical properties of the
overall algorithm is a function of the number of processors. This is
evaluated and described in details for the parallel hybrid compact-
WENOscheme [47]. The simulations in this paper are carried onvery
few number of processors with large local subdomains, and thus
parallelization-induced errors are negligible. Recent work [48]
describe an efficient and scalable parallel implementation of the
CRWENO scheme for massively parallel computations with very
small local subdomain sizes.

IV. Numerical Results

This section presents several flow problems that validate the
CRWENO5 scheme for curvilinear and overset grids as well as
demonstrate its numerical properties. The steady flow around the
RAE2822 airfoil is considered to validate the scheme for a curvilinear
grid. The unsteady flow around a pitching SC1095 airfoil in a wind
tunnel is solved to validate the scheme for an unsteady problem and a
domain discretized by overset grids with relative motion. Based on

these validations, the scheme is applied to a pitching–plunging
NACA0005 airfoil at low Reynolds number, which is a simplified,
two-dimensional representation of the flow around a flapping-wing-
based micro air vehicle. The integrated forces are verified against
previous computational results, and several improvements are ob-
served in the resolution of the flowfield. The CRWENO5 scheme is
then applied to two three-dimensional flow problems: the steady
flow over the ONERA-M6 wing and the unsteady flow around the
Harrington two-bladed rotor. Results are validated against experi-
mental data, and the improvements in the resolution of the wake
flowfield obtained with the CRWENO5 scheme are presented.

A. Steady Turbulent Flow over RAE2822 Airfoil

The CRWENO5 scheme is validated on a curvilinear mesh by
solving the steady, transonic flow over the RAE2822 airfoil. The
domain is discretized by a C-type, 521 × 401 mesh with the outer
boundary 50 chord lengths away. The wake contains 60 points in the
wrap-around direction, and the grid spacing at the airfoil surface is
4 × 10−6 times the chord length. Freestream conditions are specified
that correspond to “case 6” in the experimental database [49] for this
airfoil. The chord-based Reynolds number is 6.5 × 106, the free-
streamMach number is 0.725, and the angle of attack is 2.92 deg. The
angle of attack and freestream Mach number are corrected for wind-
tunnel effects [50] to 2.51 deg and 0.731, respectively.
Characteristic boundary conditions are applied on outer bound-

aries, whereas no-slip conditions are enforced on the airfoil surface.
Wake averaging is used in thewake-cut of the C-typemesh. Figure 1a
shows the pressure contours and the velocity streamlines for the
flowfield. The supersonic flow region on the upper surface and
the shock that terminates it are clearly visible. Figure 1b shows the
coefficient of pressure on the airfoil surface for the solution obtained
by the CRWENO5 scheme. A good agreement is observed with the
experimental data [49]. Figure 2 compares the velocity profiles at two
locations: inside the boundary layer on the upper surface at x∕c �
0.319 and inside thewake at x∕c � 1.025, and the numerical solution
agreeswellwith the experimental data. Thus, theCRWENO5 scheme
is validated for the steady flow over a domain discretized by a
curvilinear grid. The density residual is shown in Fig. 3 for the
CRWENO5 scheme as well as the WENO5 scheme. Although the
solutions show good agrement with experimental data, both these
schemes show residual drops of only one-and-a-half orders of
magnitude. In this study, a componentwise reconstruction is used
along with the nonlinear weights as formulated by Jiang and Shu [7].
The convergence of the WENO schemes for airfoil problems has
been studied [51,52], and noncharacteristic-based formulations were
observed to show poor convergence. A higher value of ϵ� 10−2 in
Eq. (16) has been proposed [51] that improves the convergence of the
WENO scheme for this problem. However, this approach forces the
nonlinear WENO scheme toward its underlying linear scheme, thus

Fig. 1 Numerical solution to the transonic flow around the RAE2822 airfoil.
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compromising its nonoscillatory nature. The value of ϵ for which good
convergence is achieved while retaining the nonoscillatory nature of
the WENO scheme is problem-dependent. Thus, this approach is not
considered in this study. Improvements to the convergence behavior
for the CRWENO5 scheme is an area of active research.

B. Dynamic Stall of SC1095 Airfoil in Wind Tunnel

The CRWENO5 scheme is verified and validated for a domain
discretized by overset grids with relative motion. The dynamic stall

of a pitching SC1095 airfoil in a wind tunnel is solved with the
CRWENO5 as well as the noncompact MUSCL3 and WENO5
schemes. Figure 4a shows the domain discretized by the airfoil and
wind-tunnelmeshes,with thewind-tunnel height five times the airfoil
chord length. A clustered Cartesian grid with 151 × 101 points is
used to discretize thewind tunnel, and a C-type, 364 × 138 point grid
is used around the airfoil, with the outer boundary approximately two
chord lengths away. Awall spacing of 5 × 10−6 is used for the airfoil
mesh, and no clustering is used for the wind-tunnel boundary layer.
The region around the airfoil is blanked out for thewind-tunnelmesh,
except near the outer boundaries of the airfoil meshwhere it is coarser
than the wind-tunnel mesh. The solution is exchanged through a
bilinear interpolation in the overlap region.
The freestream Mach number of 0.302 and a chord-based

Reynolds number of 3.92 million are specified. The airfoil pitches
with a mean angle of attack of 9.78 deg, and the pitch amplitude is
9.9 deg at a reduced frequency of 0.099. The time step size for the
simulations is taken at 0.01, which results in 10,500 iterations per
cycle. Time-accurate solutions are obtained using dual-time stepping
with 15Newtown subiterations. The simulation is run for four cycles,
and solutions are compared for the last cycle. Figure 4b shows the lift
as a function of the angle of attack over one complete cycle. The
numerical solutions show a good agreement with experimental data.
Figures 5a and 5b show the pressure contours around the airfoil at
18.83 deg angle of attack (upstroke) for solutions obtained with the
CRWENO5 scheme and the WENO5 scheme, respectively. The
vortices shed from the upper surface are transferred from the airfoil

Fig. 2 Boundary-layer and wake-velocity profiles for the RAE2822 airfoil (c is the airfoil chord).

Fig. 3 Convergence history for the RAE2822 airfoil.

Fig. 4 Pitching SC1095 airfoil in a wind tunnel.
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mesh to the wind-tunnel mesh as they convect downstream, and
the contours are continuous across themesh boundaries. This verifies
the performance of the CRWENO5 scheme for overset grids with
blanked out regions and interpolation of flow data between the grids.

C. Flow over Pitching–Plunging NACA0005 Airfoil

The flow around a pitching–plunging NACA0005 airfoil at a low
Reynolds number is solved. It is a two-dimensional, simplified
representation of the flow around a flapping-wing-based micro air
vehicle and has been previous studied numerically using a second-
order, incompressible RANS flow solver [53]. The airfoil motion
generates a positive thrust (negative drag) and zero lift, averaged over
one cycle. Lower-order algorithms are sufficient to accurately predict
lift and thrust; this paper focuses on a well-resolved flowfield around
the airfoil, including the formation and shedding of leading-edge
vortical structures. In addition to the higher-order spatial schemes
(CRWENO5 and WENO5), the one-equation Spalart–Allmaras
turbulence model [32] is used with the delayed detached-eddy
simulation modification in its two-dimensional form. It is expected
that a higher-fidelity turbulence model with high-order accurate
numerical scheme will improve the resolution of coherent vortical
structures.
An O-type mesh with 361 × 361 points is used to discretize the

domain, with outer boundaries 45 chord lengths away. The free-
stream, chord-based Reynolds number is 15,000, and the freestream
Mach number is 0.1. The pitch amplitude is 40 deg with a zero mean
angle of attack and a reduced frequency of 0.795. The plunging
motion has an amplitude of 1.0 and the same reduced frequency but
π∕2 behind in phase than the pitching motion. The airfoil pitches
around the leading edge.
Time-accurate solutions are obtained using dual time stepping,

with 15 Newton subiterations for each time step. A time step size of
0.008 is taken, resulting in 5000 iterations per cycle. The simulation
is run for four cycles, and results are presented from the final cycle.
Figure 6 shows the pressure distribution over one complete cycle for
the solution obtained by the CRWENO5 scheme on the 361 × 361
grid. As the airfoil plunges downward, leading-edge vortices are
formed on the upper surface that grow in size and then detach from the
surface. This results in a positive lift during the downstroke.
Similarly, vortices form and shed from the lower surface during the
upstroke, resulting in negative lift. This results in a zero average lift
over the entire cycle. Both strokes result in negative drag, and the
flapping motion causes the generation of positive thrust. The lift and
drag variation over one cycle is shown in Fig. 7 for solutions obtained
with the MUSCL3, WENO5, and CRWENO5 schemes as well as
previous computational results [53]. The integrated forces agreewell;
however, some differences are observed with the previous results due
to the differences in freestream conditions.

The numerical shadowgraph ∇2ρ for the solutions during the
upstroke (t∕T � 0.75) is shown in Fig. 8. The CRWENO5 schemes
shows substantial improvements in the resolution of thewake and the
leading-edge acoustic waves. Figure 9 shows the vorticity magnitude
contours at t∕T � 0.4 for both the schemes, and the vortical
structures shed from the upper surface are better resolved and
preserved by the CRWENO5 scheme as they convect in the wake.
Although the WENO5 and CRWENO5 schemes are both fifth-order
accurate, the compact scheme is better able to resolve the unsteady
flow features in the wake. Thus, to summarize, a lower-order scheme
is sufficient to predict the integrated forces; however, a higher-order
scheme is necessary to obtain a well-resolved flowfield around the
airfoil. In this respect, the CRWENO5 scheme shows considerable
improvements in the resolution of the solution, compared to the
WENO5 scheme, with both being fifth-order accurate.

D. Steady Flow over ONERA-M6 Wing

The CRWENO5 scheme is validated for a three-dimensional flow
problem by solving the transonic flow around theONERA-M6wing.
In addition, this problem is used to demonstrate and compare the
ability of the scheme to preserve the tip vortices in the wake.
Numerical solutions are usually obtained on a clustered mesh that
stretch rapidly away from the body, and a high-order accurate
numerical scheme is necessary to preserve the flow features as they
convect in the wake. A single-block C-O mesh is used to discretize
the domain,with 289 points in thewrap-around direction, 65 points in
the normal direction, and 49 points in the spanwise direction. The
wing has a unit semispan. Characteristic-based freestream boundary
conditions are enforced at all far-field boundaries. No-slip wall
boundary conditions are enforced on the wing surface. Symmetry is
assumed on the plane corresponding to the wing root. The mean-
aerodynamic-chord-based Reynolds number is 11.7 million, the
angle of attack is 3.06 deg, and the freestream Mach number is 0.84.
The solution is marched in time until it reaches a steady state.

It should be noted here that convergence issues, as described in
Sec. IV.A, are observed for this problem too; however, acceptable
solutions are obtained despite poor convergence. Figure 10 shows the
pressure coefficient on thewing surface at various spanwise locations
for the solution obtained by the CRWENO5 scheme and experi-
mental data [54]. A good agreement is observed, thus validating the
CRWENO5 scheme for a three-dimensional steady flow problem.
The CRWENO5 scheme is compared to the WENO5 scheme with
respect to their ability to accurately capture and preserve the tip
vortex as it convects in thewake. Figure 11 shows the evolution of the
tip vortex in the wake for the solutions obtained by the WENO5 and
CRWENO5 schemes. The isosurface of the vorticity magnitude is
shown in the figure. Near the wing, both the schemes are able to
accurately capture the tip vortex and the solutions are similar.

Fig. 5 Comparison of pressure contours at 18.83 deg angle of attack for the overlap region: airfoil mesh (solid) and wind-tunnel mesh (dash).
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Fig. 7 Integrated forces over one time period.

Fig. 8 Numerical shadowgraph for various schemes at t∕T � 0.75 (upstroke).

Fig. 6 Pressure distribution over one time period (ordering is from left to right and top to bottom).
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Fig. 10 Pressure coefficient on wing surface at various spanwise locations for the ONERA-M6 wing.

Fig. 9 Vorticity distribution for various schemes at t∕T � 0.40 (downstroke).
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However, further downstream, the tip vortex is better preserved with
the CRWENO5 scheme, as observed from the slices at x � 3.0 and
x � 3.5. Figure 12 compares the swirl velocity and vorticity mag-
nitude through the tip vortex core at x � 1.5. The low dissipation of
the CRWENO5 scheme yields a stronger vortex as it convects
downstream in the wake.

E. Flow Around Harrington Rotor

The flow around the experimental Harrington two-bladed single
rotor [55] is solved to validate the scheme for a three-dimensional
unsteady flow on overset, moving grids. The flow around a rotor,
and its wake, is dominated by the tip vortices shed from the blade.

A lower-order numerical scheme suffices to predict the integrated
forces over the blades; however, a high-order accurate numerical
scheme is required to resolve the wake and accurately capture the
shed vortices as they convect away from the blades. It is demonstrated
in this section that the CRWENO5 scheme results in substantial
improvements in the resolution of wake flow features. The experi-
mental setup referred to as “Rotor-2” [55] consists of a two-bladed
rotor with an aspect ratio of 8.33 and is considered in this paper. The
blade cross section is the symmetric NACA airfoil with a linearly
varying thickness of 27.5% at the hub (0.2R) to 15% at the tip (1.0R),
with R being the rotor radius. The tip Mach number and Reynolds
number are 0.352 and 3.5 × 106, respectively. The collective pitch is

Fig. 11 Evolution of tip vortex in the wake for the ONERA-M6 wing.

Fig. 12 Comparison of swirl velocity and vorticity magnitude in the tip vortex at x � 1.5.

Fig. 13 Thrust and power coefficients, and the figure of merit, for the Harrington rotor.
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varied from 2 to 12 deg to obtain the variation of thrust with power.
The domain is discretized by a cylindrical background mesh with
127�radial� × 116�azimuthal� × 118�vertical� points, and a C-O-
type blade mesh with 267�wrap-around� × 78�span� × 56�normal�
points. The backgroundmesh is clustered near the blademesh in the z
direction and at the hub and tip regions in the radial direction. The

blade mesh is clustered at the hub and tip in the spanwise direction as
well as the blade surface along the surface-normal direction. The
solution is extrapolated with zero gradients at the center of the
cylindrical mesh, while periodic boundary conditions are applied to
the azimuthal boundaries. Characteristic-based freestream boundary
conditions are applied at all other boundaries.

Fig. 14 Vorticity magnitude isosurfaces in the Harrington rotor wake flowfield.

Fig. 15 Vorticity magnitude contours on a cross-sectional slice at 0 deg azimuth.

Fig. 16 Comparison of the tip vortex for various numerical schemes.
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Time-accurate solutions are obtained using dual time stepping
with eight Newton subiterations. The simulations are carried out on
eight processors using the message passing interface library (see
Sec. III.E for a brief discussion on parallelization). Figure 13a shows
the thrust coefficient as a function of the power coefficient for
solutions obtained by the MUSCL3, WENO5, and CRWENO5
schemes, whereas Fig. 13b shows the figure of merit as a function of
the thrust coefficient. The numerical solution agrees well with
experimental data, thus validating the algorithm.
The ability of the CRWENO5 scheme to capture and preserve the

helical tip vortex in the wake is compared to that of the WENO5
schemes. The lower dissipation and higher spectral resolution of the
CRWENO5 scheme is expected to improve the resolution of the wake
vortices in thewake. Figures 14 and 15 show isosurfaces of the vorticity
magnitude in thewake and the vorticitymagnitude contours on a cross-
sectional slice at an azimuthal angle of 10 deg after 10 revolutions,
respectively. In the figures showing the cross section of the wake, the
first vortex below the blade has a wake age of π rad, the second vortex
has awakeageof2π rad, and so forth. It is observed that theCRWENO5
scheme shows a substantial improvement in the preservation of the
vortices as they convect through the domain. The shape and strength of
the tip vortex is preserved until awake age of 3π in the solution obtained
using the CRWENO5 scheme, whereas the vortex is significantly
dissipated and distorted at this wake age for the solution obtained with
the WENO5 scheme. Figure 16 shows the flow at the blade tip for the
solutions obtained with the two schemes. The vorticity magnitude
contours are shown at thevarious chordwise locations. TheCRWENO5
scheme shows reduced dissipation and the formation of a stronger tip
vortex. Thus, the CRWENO5 scheme improves the ability of the
algorithm toaccurately capture the tipvortices as they formandpreserve
their strength and structure as they convect in the wake.

V. Conclusions

This paper describes the application of the compact-reconstruction
WENO schemes to two- and three-dimensional, viscous flow
problems on curvilinear and overset grids. Previous studies have
demonstrated the advantages of the CRWENO scheme over the
WENOscheme for benchmark inviscid flow problems on equispaced
Cartesian grids. In this paper, the CRWENO scheme is integrated
with a structured, finite-volume RANS solver and validated for two-
and three-dimensional domains discretized by curvilinear grids. In
addition, its performance is verified with noncompact schemes on
overset grids with relative motion. Apart from validating and verify-
ing the CRWENO scheme, flow problems are considered that are
characterized by length scales ranging from airfoil chord length to
core diameter of shed vortices. Lower-order numerical schemes (e.g.,
third-order MUSCL) are sufficient to predict the integrated forces;
however, higher-order schemes (fifth-order WENO or CRWENO)
are required to model relevant flow features in the solution. The
ability of the CRWENO scheme to yield well-resolved solutions to
such flows is demonstrated and compared with that of the WENO
scheme. It is observed that the CRWENO scheme shows an improve-
ment in capturing and preserving flow features such as shed vortices
and boundary layers as well as resolving acoustic waves, compared
to the WENO scheme of the same order of convergence. Thus, the
CRWENO scheme is proposed as an efficient, high-resolution, non-
oscillatory reconstruction scheme for subsonic and transonic aero-
dynamic flows,where awell-resolved solution to the flowfield is desired.
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