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Numerical simulation of atmospheric 
ows requires high-resolution, nonoscillatory algorithms to
accurately capture all length scales. In this paper, a conservative �nite-di�erence algorithm is pro-
posed that uses the weighted essentially nonoscillatory and compact-reconstruction weighted essentially
nonoscillatory schemes for spatial discretization. These schemes use solution-dependent interpolation
stencils to yield high-order accurate nonoscillatory solutions to hyperbolic conservation laws. The Euler
equations in their fundamental form (conservation of mass, momentum, and energy) are solved, thus
avoiding approximations and simpli�cations. A well-balanced formulation of the �nite-di�erence algo-
rithm is proposed that preserves hydrostatically balanced equilibria to round-o� errors. The algorithm
is veri�ed for benchmark atmospheric 
ow problems.

I. Introduction

Recent decades have seen the development of several numerical algorithms for accurately simulating atmospheric 
ows.
Flows with large horizontal scales are often solved with hydrostatic models1,2 or simpli�ed models that remove acoustic
waves.3,4, 5 High-resolution simulations at smaller length scales need to model nonhydrostatic e�ects and require the
solution of the compressible Euler equations,6,7, 8 of which several formulations have been proposed in the literature.9,10

Algorithms have been proposed based on expressing the Euler equations in terms of derived quantities that are relevant to
atmospheric 
ows;11,12, 13, 14, 15 however, these methods do not conserve mass, momentum, and energy. Alternatively, the
assumption of adiabaticity simpli�es the energy conservation equation to conservation of the potential temperature;16 and
several numerical algorithms are based on this adiabatic form of the Euler equations.17,18 Some recent e�orts have proposed
solving the Euler equations as the conservation of mass, momentum, and energy with no simplifying assumptions,19,20, 9, 21

thus allowing the conservation of energy to machine precision, as well as speci�cation of the true viscous terms, should
they be required. This approach is followed in the present study.

Finite-di�erence algorithms have been used to simulate atmospheric 
ows;17,12, 22 however, they have two primary
drawbacks: low spectral resolution (due to low-order spatial discretization) and the lack of scalability.23 High-order �nite-
volume8,18, 19, 21, 24 and �nite-element or spectral-element9,10, 23 methods have been proposed that address these drawbacks.
These 
ows are often characterized by strong gradients, and linear spatial discretization methods often need an additional
�lter or arti�cial di�usion to stabilize the solution.9 Recent developments in conservative �nite-di�erence methods include
weighted essentially nonoscillatory (WENO) schemes25,26 that use solution-dependent interpolation stencils to yield high-
order accurate nonoscillatory solutions. WENO schemes have been applied successfully to several application areas.27

Flows with multiple-length scales require numerical methods with a high spectral resolution, and compact-reconstruction
WENO (CRWENO) schemes28 improve the spectral resolution of the WENO schemes by applying the solution-dependent
interpolation stencil-selection to compact �nite-di�erence schemes.29 CRWENO schemes have been applied to turbulent

ows30 and aerodynamic 
ows31 where the resolution of small-length scales is crucial. A scalable implementation of the
CRWENO scheme32 demonstrated its performance for massively parallel simulations. Thus, the WENO and CRWENO
schemes are well suited for simulating atmospheric 
ows.

The Euler equations with the gravitational terms constitute a hyperbolic balance law, and a crucial aspect of balance
laws is that they admit steady states where the 
ux derivatives are balanced by the source term. In particular, the
gravitational body forces are balanced by the pressure gradient for steady-state atmospheric 
ows. Numerical methods
must be able to preserve such steady states on �nite grids; errors introduced have the potential to overwhelm the 
ow, which
often is itself a small perturbation around the hydrostatic balance. Several algorithms address this problem by expressing
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the governing equations in terms of the perturbations of the 
ow variables over their hydrostatically balanced values.9,8, 24

Alternatively, the governing equations expressed in terms of the total variables are solved with well-balanced methods
that preserve the balanced steady state to machine precision. Balanced �nite-volume methods have been proposed33,34

and applied to the Euler equations with gravitational source terms.19,18, 21 A well-balanced �nite-di�erence WENO
method for the Euler equations with gravitational terms was proposed recently;35 however, the method was derived and
implemented for the isothermal equilibrium only, and no 
ow problems relevant to atmospheric 
ows were considered.
In the present study, the high-order well-balanced �nite-di�erence formulation36,35 is extended to atmospheric 
ows by
deriving a general well-balanced formulation for the Euler equations with gravitational source terms. This formulation
is then shown to preserve several examples of the hydrostatic equilibria encountered in atmospheric 
ows. The balanced
formulation for the isothermal equilibrium35 is shown to be a speci�c case of the general formulation proposed here.

The outline of the paper is as follows. Section II describes the governing equations. The numerical method, including
the well-balanced formulation, is described in Sec. III. The algorithm is veri�ed, and results for benchmark 
ow problems
are presented in Sec. IV. The Appendix contains three examples of the general well-balanced formulation.

II. Governing Equations

Atmospheric 
ows are governed by the inviscid Euler equations37 with the addition of gravitational and Coriolis forces,
and several formulations exist in the literature.9,10 The Euler equations stated as the conservation of mass, momentum,
and energy are used in this study. Mesoscale 
ows are considered, but Coriolis forces are neglected. The governing
equations are expressed as

@�

@t
+ r � (�u) = 0; (1)

@ (�u)

@t
+ r � (�u 
 u + pId) = ��g; (2)

@e

@t
+ r � (e + p)u = ��g � u; (3)

where � is the density, u is the velocity vector, p is the pressure, and g is the gravitational force vector (per unit mass).
Id denotes the identity matrix of size d, where d is the number of space dimensions. The energy is given by

e =
p


 � 1
+

1

2
�u � u; (4)

where 
 is the speci�c heat ratio. The equation of state relates the pressure, density, and temperature as p = �RT , where
R is the universal gas constant and T is the temperature. Two additional quantities of interest in atmospheric 
ows are
the Exner pressure � and the potential temperature �, de�ned as

� =

�

p

p0

�


�1




; and � =
T

�
; (5)

respectively. The pressure at a reference altitude is denoted by p0.

III. Numerical Method

Equations (1){(3) are discretized by a conservative �nite-di�erence method. Two-dimensional 
ows with gravitational
forces acting along the y dimension are considered in this study, and the governing equations can be expressed as a
hyperbolic conservation law,

@q

@t
+

@F (q)

@x
+

@G (q)

@y
= s (q) ; (6)

where the state vector, the 
ux vectors along x and y, and the source terms are

q =

2

6

6

6

4

�

�u

�v

e

3

7

7

7

5

; F =

2

6

6

6

4

�u

�u2 + p

�uv

(e + p)u

3

7

7

7

5

; G =

2

6

6

6

4

�v

�uv

�v2 + p

(e + p)v

3

7

7

7

5

; s =

2

6

6

6

4

0

0

��g

��vg

3

7

7

7

5

: (7)
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The Cartesian velocity components are u and v, and g is the gravitational force (per unit mass). A conservative spatial
discretization38,39 of Eq. (6) yields a semi-discrete ordinary di�erential equation (ODE) in time,

dqij

dt
+

1

�x

�

f̂i+1=2;j � f̂i�1=2;j

�

+
1

�y

�

ĝi;j+1=2 � ĝi;j�1=2

�

= sij ; (8)

where qij = q(xi; yj) is the cell-centered solution, (xi = i�x; yj = j�y) are the spatial coordinates of a grid point, and

i; j denote the grid indices. The numerical approximation to the 
ux function at the cell interfaces f̂i+1=2;j ; ĝi;j+1=2 satisfy

@F

@x

�

�

�

�

xi;yj

=
1

�x
[f̂(xi+1=2;j; t) � f̂(xi�1=2;j ; t)] + O (�xr) ; (9)

@G

@y

�

�

�

�

xi;yj

=
1

�y
[ĝ(xi+1=2;j; t) � ĝ(xi�1=2;j ; t)] + O (�yr) ; (10)

for an rth-order spatial discretization method. The discretized source term sj in Eq. (8) is expressed as its cell-centered
value, and this naive treatment does not preserve the hydrostatic equilibrium.35 The treatment of the source term for a
well-balanced formulation is discussed in subsequent sections.

A. Reconstruction

The reconstruction step approximates the numerical 
ux f̂ and ĝ at the cell interfaces from the cell-centered 
ux functions
F (q) and G (q), respectively. The reconstruction procedure for a one-dimensional function is described in this section;

speci�cally, it involves the approximation of the interface 
ux f̂j+1=2 = f̂
�

xj+1=2

�

from a cell-centered 
ux function
fj = f (xj) to the desired accuracy. It can be trivially extended to multiple dimensions for computing the approximate

ux terms in Eq. (8). The �fth-order WENO26 and CRWENO28 schemes are used in this study and are brie
y summarized
below. This discussion considers a left-biased reconstruction of a scalar 
ux; the corresponding right-biased reconstruction
can be similarly obtained. Vector quantities are reconstructed in a componentwise way.

The �fth-order WENO scheme (WENO5)26 is constructed by considering three third-order accurate interpolation

schemes for the numerical 
ux f̂j+1=2:

f̂1
j+1=2 =

1

3
fj�2 �

7

6
fj�1 +

11

6
fj ; c1 =

1

10
; (11)

f̂2
j+1=2 = �

1

6
fj�1 +

5

6
fj +

1

3
fj+1; c2 =

6

10
; (12)

f̂3
j+1=2 =

1

3
fj +

5

6
fj+1 �

1

6
fj+2; c3 =

3

10
; (13)

where ck; k = 1; 2; 3 are the optimal coe�cients. Multiplying Eqs. (11)|(13) by the corresponding ck and taking the sum
yields a �fth-order interpolation scheme,

f̂j+1=2 =
1

30
fj�2 �

13

60
fj�1 +

47

60
fj +

27

60
fj+1 �

1

20
fj+2: (14)

The optimal coe�cients are replaced by nonlinear weights (!k; k = 1; 2; 3) and the �fth-order WENO scheme is the
weighted sum of Eqs. (11){(13), expressed as

f̂j+1=2 =
!1

3
fj�2 �

1

6
(7!1 + !2)fj�1 +

1

6
(11!1 + 5!2 + 2!3)fj +

1

6
(2!2 + 5!3)fj+1 �

!3

6
fj+2: (15)

The nonlinear weights are evaluated based on the smoothness of the solution,40

!k =
�k

P

k �k
; �k = ck

"

1 +

�

�

� + �k

�2
#

; (16)

where
� = (fj�2 � 4fj�1 + 6fj � 4fj+1 + fj+2)

2
: (17)
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The parameter � = 10�6 prevents division by zero, and the smoothness indicators (�k) are given by

�1 =
13

12
(fj�2 � 2fj�1 + f2

j +
1

4
(fj�2 � 4fj�1 + 3f2

j ; (18)

�2 =
13

12
(fj�1 � 2fj + f2

j+1 +
1

4
(fj�1 � f2

j+1; (19)

and �3 =
13

12
(fj � 2fj+1 + f2

j+2 +
1

4
(3fj � 4fj+1 + f2

j+2: (20)

Other de�nitions for the nonlinear weights exist in the literature,41,42, 43 as well as a comparison of the nonlinear properties
of the WENO5 scheme with these weights.30 When the solution is smooth, the nonlinear weights converge to the optimal
coe�cients (!k ! ck), and Eq. (15) reduces to Eq. (14). The scheme is �fth-order accurate for such solutions. Across
and near discontinuities, the weights corresponding to the stencil containing the discontinuity approach zero, and Eq. (15)
represents an interpolation scheme with its stencil biased away from the discontinuity. Nonoscillatory solutions are thus
obtained.

The CRWENO schemes are constructed by applying the solution-dependent stencil selection mechanism of the WENO
schemes to compact �nite-di�erence schemes. Compact �nite-di�erence schemes are characterized by higher spectral res-
olution,29 and the CRWENO schemes yield nonoscillatory solutions with lower dissipation and higher resolution.28,30, 31

The �fth-order CRWENO scheme (CRWENO5)28 is constructed by considering three third-order accurate compact inter-

polation schemes for the numerical 
ux f̂j+1=2:

2

3
f̂1

j�1=2 +
1

3
f̂1

j+1=2 =
1

6
(fj�1 + 5fj) ; c1 =

2

10
; (21)

1

3
f̂2

j�1=2 +
2

3
f̂2

j+1=2 =
1

6
(5fj + fj+1) ; c2 =

5

10
; (22)

2

3
f̂3

j+1=2 +
1

3
f̂3

j+3=2 =
1

6
(fj + 5fj+1) ; c3 =

3

10
; (23)

where ck; k = 1; 2; 3 are the optimal coe�cients. A �fth-order compact scheme is obtained by multiplying Eqs. (22){(23)
by their corresponding optimal coe�cient ck and adding

3

10
f̂j�1=2 +

6

10
f̂j+1=2 +

1

10
f̂j+3=2 =

1

30
fj�1 +

19

30
fj +

1

3
fj+1: (24)

The CRWENO5 scheme is constructed by replacing the optimal coe�cients ck by nonlinear weights !k and can be
expressed as

�

2

3
!1 +

1

3
!2

�

f̂j�1=2 +

�

1

3
!1 +

2

3
(!2 + !3)

�

f̂j+1=2 +
1

3
!3f̂j+3=2

=
!1

6
fj�1 +

5(!1 + !2) + !3

6
fj +

!2 + 5!3

6
fj+1: (25)

The weights !k are computed by Eq. (16) and Eqs. (18){(20). The resulting scheme, Eq. (25), is �fth-order accurate when
the solution is smooth (!k ! ck) and reduces to Eq. (24). Across and near discontinuities, the weights corresponding
to the stencils containing the discontinuity approach zero, and a biased (away from the discontinuity) compact scheme is
obtained. Equation (25) results in a tridiagonal system of equations that must be solved at each time-integration step or
stage. An e�cient and scalable implementation of the CRWENO5 scheme is proposed in32,44 and used in this study.

The solution of a hyperbolic system is composed of waves propagating at their characteristic speeds along their
characteristic directions. Thus, the �nal 
ux at the interface is an appropriate combination of the left- and right-biased

uxes. The Rusanov scheme45,46 is used and is given by

f̂j+1=2 =
1

2

�

f̂L
j+1=2 + f̂R

j+1=2 + max
j;j+1

�j

�

q̂L
j+1=2 � q̂R

j+1=2

�

�

; (26)

where the superscripts L and R indicate left- and right-biased interpolations, respectively. The dissipation factor is
� = a + juj, where a is the speed of sound and u is the 
ow velocity. Of note is the fact that q̂

L;R
j+1=2 are the left- and

right-biased interface values for q that are reconstructed in the same manner as f̂
L;R
j+1=2.
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B. Well-Balanced Formulation

Equation (6) is a hyperbolic balance law with steady-state solutions where the pressure gradient is exactly balanced by
the gravitational source term. Atmospheric 
ows are often small perturbations to this balanced steady state, and the
ability to preserve such steady states to round-o� errors is critical in ensuring that numerical errors do not overwhelm
the physical perturbations. A well-balanced conservative �nite-di�erence algorithm recently was proposed;35 however,
the formulation is limited to an isothermal equilibrium. A general formulation is introduced in this study based on the
approach described in36,47, 35 that holds for any hydrostatic equilibrium. Speci�c examples illustrate the application of
this formulation to the equilibria encountered in 
ow problems of practical relevance. The well-balanced algorithm is
described for two-dimensional 
ows with gravity acting along the y dimension; however, the formulation presented can be
easily extended to three dimensions and for domains where the gravity may not be aligned with a speci�c dimension.

Equation (6) admits steady-state solutions that may be expressed as

u = constant; v = 0; � = �0% (y) ; p = p0’ (y) ; (27)

where the subscript 0 indicates the 
ow variables at a reference altitude. The pressure and density at the reference altitude
are related by the equation of state p0 = �0RT0. At equilibrium, Eq. (6) reduces to

dp

dy
= ��g: (28)

Therefore, by substituting Eq. (27) in Eq. (28) and considering the equation of state, the functions % (y) and h (y) satisfy
the following relation:

RT0 [% (y)]
�1

’0 (y) = �g: (29)

A well-balanced �nite-di�erence method is implemented by modifying Eq. (6) as

@q

@t
+

@F (q)

@x
+

@G (q)

@y
= s� (q; y) ; (30)

where s� =
h

0; 0; �RT0 [% (y)]
�1

’0 (y) ; �vRT0 [% (y)]
�1

’0 (y)
iT

. Equation (29) ensures that Eq. (30) is consistent with

Eq. (6), rendering the source terms in a form similar to that of the 
ux term.36,35 A well-balanced algorithm must satisfy
the hydrostatic balance in its discretized form. Thus, the discretized 
ux derivative must exactly balance the discretized
source term. A linear �nite-di�erence approximation to the derivative of a function � (x) can be expressed as

@�

@x

�

�

�

�

x=xj

� D [�] �
n

X

k=�m

�D
k �j+k; (31)

where m and n are integers de�ning the stencil [j � m; j � m + 1; � � � ; j + n � 1; j + n] of the �nite-di�erence operator D
and where �D

k are the stencil coe�cients. The discretized form of Eq. (30) at steady state is given by

DG [p] � �RT0 f% (y)g�1 Ds� [’ (y)] = 0; (32)

where DG and Ds� are the �nite-di�erence operators used to approximate the y derivatives of the 
ux function G and the
source term s�, respectively. In general, Eq. (32) will not hold true on a grid with a �nite number of points even if DG

and Ds� are both consistent �nite-di�erence operators, and the overall algorithm will not be able to preserve the steady
solution. However, this relationship is exactly satis�ed if

DG = Ds� = D: (33)

By substituting Eq. (33) and exploiting the linearity of D, the left-hand side of Eq. (32) reduces to

D
h

p � �RT0 f% (y)g�1 ’ (y)
i

= D
h

p0’ (y) � �0% (y) RT0 f% (y)g�1 ’ (y)
i

= 0: (34)

Equation (33) implies that a linear �nite-di�erence algorithm to solve Eq. (30) is well balanced (preserves hydrostatically
balanced steady states to round-o� error) if the 
ux derivative and the source terms are discretized by the same linear
operator.
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The spatial discretization schemes used in this study are nonlinear �nite-di�erence operators, and additional steps are
required to construct a well-balanced algorithm. Based on the discussion in the preceding section, the discretization of
the 
ux derivative along y can be summarized as follows:

Ĝ
L;R
j+1=2 = RL;R

G
[G] �

n
X

k=�m

�̂kGj+k; (35)

Ĝj+1=2 =
1

2

�

ĜL
j+1=2 + ĜR

j+1=2 + max
j;j+1

�j

�

q̂L
j+1=2 � q̂R

j+1=2

�

�

; (36)

@G

@y

�

�

�

�

y=yj

�
1

�y

h

Ĝj+1=2 � Ĝj�1=2

i

; (37)

where j is the grid index along the y coordinate (the index along the x coordinate is suppressed for convenience of

notation), RL;R
G

are the reconstruction operators with m and n de�ning the stencil bounds, and �̂k are the coe�cients
for the stencil points. Equations (15) and (25) (representing the WENO5 and CRWENO5 schemes, respectively) can be
represented through this operator. The subscript G denotes that the nonlinear weights (!k) are computed based on G (q).
The superscripts L and R denote the left- and right-biased operators respectively.

A well-balanced algorithm requires that the derivative of ’ (y) in the source term of Eq. (30) be discretized in the
same manner as the 
ux derivative. This can be summarized as follows:

’̂
L;R
j+1=2 = RL;R

G
[’] �

n
X

k=�m

�̂k’j+k; (38)

’̂j+1=2 =
1

2

h

’̂
L
j+1=2 + ’̂

R
j+1=2

i

; (39)

@’

@y

�

�

�

�

y=yj

�
1

�y

�

’̂j+1=2 � ’̂j�1=2

�

; (40)

where the vector ’ is simply given by ’ = [0; 0; ’ (y) ; ’ (y)]T. The remaining terms in the source s� are evaluated at the
cell center j. The interpolation operators in Eqs. (35) and (38) are both RG; the interface values of both G and ’ are
computed with the same interpolation operator. This is achieved in the WENO5 and CRWENO5 schemes by calculating
the weights based on the smoothness of the 
ux function G (q), and using these weights to compute the interface values
of both G and ’ at a given time-integration step or stage.

The �nal step in the construction of a well-balanced method is the suitable modi�cation of the dissipation term in
Eq. (36). The Rusanov upwinding procedure, given by Eq. (36), is modi�ed as follows:

Ĝj+1=2 =
1

2

�

ĜL
j+1=2 + ĜR

j+1=2 + � max
j;j+1

�j

�

q̂
�;L
j+1=2 � q̂

�;R
j+1=2

�

�

; (41)

where � = maxj;j+1 ’ (y), q̂�;L
j+1=2 and q̂

�;R
j+1=2 are the left- and right-biased interpolation (at the interface) of a modi�ed

state vector q� =
h

� f% (y)g�1
; �u f% (y)g�1

; �v f% (y)g�1
; e�

iT

. The modi�ed energy e� is given by

e� =
p f’ (y)g�1


 � 1
+

1

2
� f% (y)g�1 �

u2 + v2
�

: (42)

At steady state, q� is a constant, and the dissipation term in Eq. (41) is zero with this modi�cation (q̂�;L
j+1=2 = q̂

�;R
j+1=2).

Discretization of the 
ux derivatives in Eq. (30) by Eqs. (35), (41), and (37) and evaluation of the source term as
Eqs. (38), (39), and (40) result in the following form for the steady-state solution given by Eq. (27) at grid point j:

p0

�

’̂j+1=2 � ’̂j�1=2

�y

�

= �jRT0 f%(yj)g�1

�

’̂j+1=2 � ’̂j�1=2

�y

�

; (43)

where the ’̂j+1=2 denotes the interface approximation of the scalar function ’ (y). It is evaluated on the left-hand side
through Eq. (35) and Eq. (41) and is evaluated on the right-hand side through Eq. (38) and Eq. (39). Equation (43) is
exactly satis�ed if the operator RG is linear. Although RG represents nonlinear �nite-di�erence operators Eqs. (15) and
(25), the nonlinearity of these schemes arises from the solution-dependent weights !k. Within a time-integration step or
stage, these weights are computed and �xed, and the operator RG is essentially linear. Therefore, Eq. (43) is exactly
satis�ed.
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