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Abstract Atmospheric flows are characterized by a large range of length scales as
well as strong gradients. The accurate simulation of such flows requires numerical
algorithms with high spectral resolution, as well as the ability to provide nonoscilla-
tory solutions across regions of high gradients. These flows exhibit a large range of
time scales as well—the slowest waves propagate at the flow velocity and the fastest
waves propagate at the speed of sound. Time integration with explicit methods
are thus inefficient, although algorithms with semi-implicit time integration have
been used successfully in past studies. We propose a finite-difference method for
atmospheric flows that uses a weighted compact scheme for spatial discretization
and implicit-explicit additive Runge-Kutta methods for time integration. We present
results for a benchmark atmospheric flow problem and compare our results with
existing ones in the literature.

1 Introduction

The simulation of atmospheric flows requires accurate numerical solutions of the
compressible Navier-Stokes equations or the inviscid Euler equations if the physical
viscosity and heat conduction are neglected. Such flows are characterized by
localized flow structures and strong gradients, and numerical algorithms need a high
spectral resolution and must be nonoscillatory across regions of strong gradients.
Algorithms used for numerical weather prediction include finite-difference methods
[13], finite-volume methods [1], and discontinuous Galerkin and spectral element
methods [9, 10]. Although standard finite-difference methods suffer from poor
spectral resolution, compact finite-difference methods [15] have significantly higher
spectral resolution and have been applied to applications such as large eddy
simulations and direct numerical simulations of turbulent flows [14, 18].
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In this study, we propose a high-order finite-difference method for atmo-
spheric flows based on compact-reconstruction weighted essentially nonoscillatory
(CRWENO) schemes [5, 6, 8]. The CRWENO schemes combine the high spectral
resolution of linear compact schemes with the solution-dependent stencil adaptation
method of the WENO schemes [11, 17] to produce nonoscillatory solutions.
Although discontinuities such as shock waves are not encountered in atmospheric
flows, strong gradients often form that are resolved by very few grid points. The
CRWENO schemes are thus well suited for simulating such flows. We explore
implicit-explicit time-integration schemes based on a separation of stiff and nonstiff
components of the governing equations [9]. We present results for a benchmark
atmospheric flow problem.

2 Governing Equations

We consider the conservative form of the Euler equations based on the mass,
momentum, and potential temperature for mesoscale flows (neglecting the Coriolis
forces) [9]. These are given by
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where � is the density, u is the velocity vector, p is the pressure, I is the identity
matrix, and g is the acceleration due to gravity acting along the z-axis of the
coordinate system with unit vector Ok. The potential temperature � is given by
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where T is the temperature, � is the Exner pressure, p0 is the pressure at the
surface (or reference altitude), R is the universal gas constant, and CP is the constant
pressure specific heat. The system of equations is completed by the equation of state,
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CV , where CV is the constant volume specific heat. Equation (1) is

expressed in terms of the density, pressure, and potential temperature perturbations
(�0, p0, � 0) that can be expressed as .�/0 D .�/ .x; y; z; t/� N.�/.z/, where N.�/ is the mean
density, pressure, or potential temperature in hydrostatic balance CP

N� d N�
dz D �g.

The governing equations form a system of hyperbolic partial differential equations
(PDEs) and are solved by a conservative finite-difference algorithm.
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3 Numerical Methodology

Equation (1) can be expressed as a system of hyperbolic conservation laws with a
source term
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@t
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where U is the solution, fi is the flux along the ith dimension, s is the source
term, and D is the number of dimensions. We describe the discretization of (3)
in one dimension (D D 1); it can be trivially extended to multiple dimensions.
A conservative, finite-difference spatial discretization of (3) on this grid results in a
semi-discrete ordinary differential equation (ODE) in time,

dUj
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C 1
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i
D sj; j D 1; � � � ; N; (4)

where j denotes the grid index, Uj D U.xj/ is the cell-centered solution, OfjC1=2 is the
numerical flux at the cell interface xjC1=2, and sj is the source term evaluated at the
cell center.

3.1 Reconstruction

We use the CRWENO scheme [5, 6, 8] to reconstruct the interface fluxes OfjC1=2

from the cell-centered flux fj. We briefly summarize the scheme in this section; a
more complete description is available in [5]. The fifth-order CRWENO scheme
(CRWENO5) is constructed by considering three third-order-accurate compact
interpolation schemes for the flux function at the . j C 1=2/th interface:
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Multiplying (5)–(7) with their optimal coefficients (ck; k D 1; 2; 3) and adding, we
obtain the fifth-order-accurate compact interpolation scheme,
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We now compute weights !k based on the local smoothness of the solution [11] such
that they converge to the corresponding optimal coefficient ck when the solution
is locally smooth, and approach zero at or near a discontinuity. They can be
expressed as

!k D ˛kP
k ˛k

I ˛k D ck

.� C ˇk/
p I k D 1; 2; 3; (9)

where � D 10�6 is a small number to prevent division by zero. The smoothness
indicators (ˇk) measure the local smoothness of the solution and are given by
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Multiplying (5)–(7) with !k instead of ck, and adding, we obtain the CRWENO5
scheme:
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This scheme is fifth-order accurate when the solution (!k ! ck) is smooth, and it
yields a nonoscillatory solution across discontinuities by biasing the interpolation
stencil away from it. The standard fifth-order WENO scheme [11] is used to
compute the flux at the physical boundaries [5]. Equation (13) requires the solution
to a tridiagonal system of equations at each time-integration step or stage; however,
past studies [5] demonstrated the higher computational efficiency of the CRWENO
scheme compared with a standard finite-difference scheme. A scalable and efficient
parallel implementation of the CRWENO5 scheme is discussed in [7]. This discus-
sion describes the left-biased computation of the interface flux; the corresponding
expressions for the right-biased interface flux can be similarly obtained. The final
flux at a given interface is computed from the left- and right-biased approximations
by using the Rusanov upwinding scheme [16].
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3.2 Time Integration

Equation (4) is integrated in time by using explicit Runge-Kutta (ERK) and implicit-
explicit additive Runge-Kutta (ARKIMEX) methods. Efficient implementations of
these methods are available in the TS (time-stepping) module of PETSc [3, 4].
ERK methods are often inefficient, however, because the time-step size is restricted
by the acoustic (fastest) wave. Implicit-explicit time-integration methods have
been previously applied to atmospheric flows [9, 10]. We briefly summarize the
separation of stiff and nonstiff components of the governing equations and its
implicit-explicit discretization in time.

Equation (1) can be rearranged such that the right-hand side comprises a nonstiff
term and a linear stiff term [9],
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where the pressure perturbation is linearized as p0 D � Np
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, with � D
CP=CV as the specific heat ratio. The nonstiff component, S .U/, of the right-hand
side of (14) consists of terms that are second and higher order perturbations around
the hydrostatic balance; and the linear stiff component, L .U/, consists of terms that
are first order perturbations. Equation (14) is spatially discretized and integrated in
time by using the ARKIMEX methods [2, 12, 19], where an ERK method is applied
to the nonstiff term and an ARK method is applied to the stiff term. This multistage
procedure can be expressed as
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where s is the number of stages, the superscripts of U indicate the stage index, and
the subscripts of U indicate the time step. The coefficients aki and bi specify the
ERK method, and the coefficients Qaki and Qbi specify the ARK method. OS and OL are
the spatially discretized forms of S .U/ and L .U/, respectively.

Past applications of implicit-explicit time-integration to atmospheric flows [9, 10]
used discontinuous Galerkin or spectral element methods for the discretization
of spatial derivatives; these approaches resulted in (15) being a linear system.
We, however, use a nonlinear finite-difference operator to discretize the spatial
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derivative, as given by (4) and (13). Thus, OL is nonlinear even though L is linear,
and (15) is a nonlinear system of equations. We make two comments on our
algorithm in this context.

• We ensure that the discretized right-hand side ( OSC OL) is consistent with the right-
hand side of (14) by using the same finite-difference operator to discretize both
S and L. The nonlinear weights in (13) are computed based on the smoothness
of S C L, and the resulting CRWENO5 scheme is applied to both terms.

• We linearize the finite-difference operator at each stage such that (15) is a linear
system of equations. We compute the nonlinear weights in (13) at the beginning
of stage k based on the smoothness of .S C L/

�
U.k�1/

�
(or .S C L/ .Un/ for

k D 1); and we solve (15) as a linear system (since, once the nonlinear weights
are fixed, (13) is a linear operator).

The linear system is solved using the generalized residual method (GMRES)
method [20] implemented in the KSP (linear equations solvers) module of PETSc.
The current implementation does not apply any preconditioning; the derivation of
effective preconditioners for this application is a subject of active research.

4 Results

We verify our algorithm by solving the two-dimensional inertia-gravity wave prob-
lem [13]. The domain is a periodic channel with dimensions 300;000 � 10;000 m.
Zero-flux boundary conditions are specified at the top and bottom boundaries. The
initial atmosphere has a mean flow of 20 m/s and is uniformly stratified with a
Brunt-Vaisala frequency of N D 0:01/s [9, 13]. A perturbation in the potential
temperature is introduced as
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where �c D 0:01 K, hc D 10;000 m, ac D 5000 m, xc D 100;000 m, and �c is the
trigonometric constant. Solutions are obtained at a final time of 3000 s. Figure 1a
shows the potential temperature perturbation (� 0) contours for a solution obtained
with the CRWENO5 scheme on a grid with 1200 � 50 points. The solution is
integrated in time with the second-order-accurate, two-stage ARKIMEX 2C method
at a CFL of 8. We observe good agreement with results in the literature [1, 9, 13].
The cross-sectional variation of the potential temperature perturbation through
z D 5000 m is shown in Fig. 1b for the solutions obtained with the CRWENO5
as well as the fifth-order WENO (WENO5) [11] schemes. The explicit four-
stage, fourth-order Runge-Kutta (RK4) and the three-stage, third-order ARKIMEX
(ARKIMEX3) methods are used to integrate the solution in time. The absolute and
relative tolerances for the linear solver are specified as 10�6. Excellent agreement
is observed for all the methods with the reference solution, obtained by using the
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Fig. 1 Solutions of the inertia-gravity wave problem obtained on a grid with 1200 � 50

points. (a) Potential temperature perturbation contours. (b) Cross-sectional variation of potential
temperature perturbation

Fig. 2 Error analysis on a grid with 8192 � 256 points. (a) L2 norm of the error as a function of
time step size. (b) Mass conservation error as a function of time step size

spectral element method with 10th-order polynomials and 250-m grid resolution
[9]. Figure 2a shows the L2 norm of the error as a function of the time-step sizes
for solutions obtained on a grid with 8192 � 256 points. The reference solution
is computed with the strong-stability-preserving three-stage, third-order Runge-
Kutta (SSPRK3) scheme and a small time-step size of 0:0005. We consider two
ERK schemes, SSPRK3 and RK4, and three ARKIMEX schemes, ARKIMEX2C,
ARKIMEX3, and ARKIMEX4 (four-stage, fourth-order). The semi-implicit solu-
tions are obtained by specifying the absolute and relative tolerances for the linear
solver as 10�12 and 10�10, respectively. The methods converge at their theoretical
convergence rates. Figure 2b shows the error in mass conservation for the various
methods and time-step sizes. Mass is conserved to round-off error for all the
methods considered.
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5 Conclusions

A high-order-accurate finite-difference method for the simulation of atmospheric
flows is proposed in this paper. The algorithm uses the CRWENO scheme for spatial
discretization and the ARKIMEX schemes for time integration. The semi-implicit
ARKIMEX schemes result in a time-step size that is not restricted by the acoustic
waves. The algorithm is applied to a benchmark atmospheric flow problem, and
solutions show excellent agreement with existing results in the literature. The semi-
implicit time-integrators exhibit optimal convergence and conservative behavior.
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