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Thenumerical simulationofmeso-, convective-, andmicroscale atmospheric flows requires the solution of theEuler

or the Navier–Stokes equations. Nonhydrostatic weather prediction algorithms often solve the equations in terms of

derived quantities such as Exner pressure and potential temperature (and are thus not conservative) and/or as

perturbations to the hydrostatically balanced equilibrium state. This paper presents a well-balanced, conservative

finite difference formulation for the Euler equations with a gravitational source term, where the governing equations

are solved as conservation laws formass,momentum, and energy. Preservation of the hydrostatic balance tomachine

precision by the discretized equations is essential because atmospheric phenomena are often small perturbations to

this balance. The proposed algorithm uses the weighted essentially nonoscillatory and compact-reconstruction

weighted essentially nonoscillatory schemes for spatial discretization that yields high-order accurate solutions for

smooth flows and is essentially nonoscillatory across strong gradients; however, the well-balanced formulation may

be used with other conservative finite difference methods. The performance of the algorithm is demonstrated on test

problems as well as benchmark atmospheric flow problems, and the results are verified with those in the literature.

Nomenclature

A = flux Jacobian matrix
a = Runge–Kutta coefficients for stage calculation
b = Runge–Kutta coefficients for step completion
c = optimal weights for weighted essentially nonoscilla-

tory scheme
D = discretization operator
e = energy per unit mass, J∕m3

e� = nondimensional energy per unit mass
F, G = flux vectors along x, y
f = one-dimensional flux function (vector)
f = one-dimensional flux function (scalar)
g = gravitational force (per unit mass) vector, m∕s2
g� = nondimensional gravitational force (per unit mass)

vector
g = gravitational force per unit mass, m∕s2
i, j = grid indices
L = right-hand-side operator for semidiscrete ordinary

differential equation
n = index for time integration
p = pressure, N∕m2

p� = nondimensional pressure
Q = Runge–Kutta stage values of q
q = state vector
R = universal gas constant, J∕kg · K
R = interpolation operator
r = order of spatial discretization scheme
s = source term
T = temperature, K
t = time, s
t� = nondimensional time
u = velocity vector, m∕s

u� = nondimensional velocity vector
u, v = flow velocity components in x, y, m∕s
X,
X−1

= matrices with right and left eigenvectors as columns
and rows, respectively

x = spatial position vector, m
x� = nondimensional spatial position vector
x, y = spatial position
α = nonconvex weighted essentially nonoscillatory

weights
β = smoothness indicators for weighted essentially non-

oscillatory discretization
γ = specific heat ratio
ϵ = parameter for weighted essentially nonoscillatory

discretization
θ = potential temperature, K
κ = dissipation factor due to gravitational field
Λ = diagonal matrix of eigenvalues
ν = dissipation factor in Rusanov’s upwinding
π = Exner pressure
ρ = density, kg∕m3

ρ� = nondimensional density
ϱ = density variation function for stratified atmosphere
σ = interpolation coefficients
τ = parameter for weighted essentially nonoscillatory

discretization
ϕ = scalar function
φ = pressure variation function for stratified atmosphere
ω = nonlinear weighted essentially nonoscillatory weights

I. Introduction

R ECENT decades have seen the development of several
numerical algorithms for the accurate simulation of

atmospheric flows. Hydrostatic models [1,2] or simplified models
that remove acoustic waves [3–5] are often used for flows with large
horizontal scales (such as planetary simulations). Nonhydrostatic
effects are significant when simulating meso-, convective-, and
microscale atmospheric phenomena; thus, the solution to the
compressible Euler equations is required [6–8]. Various formulations
of the Euler equations have been proposed in the literature and used
for operational weather prediction software [9,10]. Algorithms that
solve the Euler equations in terms of derived quantities that are
relevant to atmospheric flows [11–15] (such as Exner pressure and
potential temperature) do not conserve mass, momentum, and
energy, even though the numerical discretization may be
conservative. Several algorithms [8,16–20] solve the governing
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equations in terms of mass and momentum conservation and use the
assumption of adiabaticity to simplify the energy conservation
equation to the conservation of potential temperature [21]. Recent
efforts solve the Euler equations as conservation laws for mass,
momentum, and energy [9,22–24], with no additional assumptions.
This form of the governing equations is identical to that used in
simulating compressible aerodynamic flows [25,26]. Thus, a
conservative discretization conserves the mass, momentum, and
energy to machine precision, and the true viscous terms may be
specified if needed. This approach is followed here.
Several operational algorithms to simulate atmospheric flows

[12,16,27] are based on the finite difference method; however, they
have been criticized for their low spectral resolution (due to low-order
spatial discretization) and the lack of scalability [19]. These
drawbacks have been addressed to some extent by high-order finite
volume [8,17,20,22,24] and finite element or spectral-element
[9,10,19] methods. Often, atmospheric phenomena are characterized
by strong gradients, and stable solutions are obtained by using a total
variation diminishing/bounded discretization (such as slope-limited
methods [17,20,24]), applying a filter [9], or adding artificial
diffusion [8,9]. On the other hand, the weighted essentially
nonoscillatory (WENO) schemes [28,29] use solution-dependent
interpolation stencils to yield high-order accurate nonoscillatory
solutions and have been applied successfully to several application
areas [30] including compressible and incompressible fluid dynamics.
The compact-reconstruction WENO (CRWENO) schemes [31] apply
the solution-dependent stencil selection to compact finite difference
schemes [32] and thus have higher spectral resolution than the standard
WENO schemes. The CRWENO schemes have been applied to
turbulent flows [33] and aerodynamic flows [34] where the resolution
of small length scales is crucial. Although the CRWENO schemes
require the solution to banded systems of equations at every time-
integration step or stage, a scalable implementation of the CRWENO
scheme [35] demonstrated its performance for massively parallel
simulations. The accuracy, spectral resolution, and scalability of the
WENO and CRWENO schemes make them well suited for the
simulation of atmospheric flows.
TheEuler equations, with the addition of gravitational andCoriolis

forces as source terms, govern the dynamics of atmospheric flows and
constitute a hyperbolic balance law. This paper focuses on meso-,
convective-, and microscale flows, and the Coriolis forces are
neglected. Balance laws admit steady states where the flux
derivatives are balanced by the source terms. In the context of
atmospheric flows, steady states are in hydrostatic balance, where the
pressure gradient is counteracted by the gravitational body force.
Numerical methods must be able to preserve such steady states on a
finite grid to machine precision. Atmospheric phenomena are often
small perturbations to the hydrostatic balance, and thus errors in
balancing the discretized pressure gradient with the gravitational
forces have the potential to overwhelm the flow. One way to ensure
the preservation of this balance is by subtracting the hydrostatically
balanced quantities from the flow variables and expressing the
equations in terms of the perturbations [8,9,20]. Alternatively, well-
balanced discretization methods for the governing equations can be
formulated that preserve the hydrostatic balance on a finite grid.
Balanced finite volume methods have been proposed [36,37] and
applied to the Euler equations with gravitational source terms
[17,22,24]. A well-balanced, conservative finite difference
formulation for the shallow water equations was introduced [38]
and extended to general balance laws [39] aswell as finite volume and
discontinuous Galerkin discretizations [40]. This formulation was
applied to the Euler equations with gravitational source terms [41];
however, it was derived only for the special case of an isothermal
equilibrium, and other balanced equilibria or flow problems relevant
to atmospheric flows were not considered.
This paper presents a high-order, well-balanced finite difference

algorithm for atmospheric flows. The governing equations are solved
as conservation laws for mass, momentum, and energy. The balanced
formulation of Xing and Shu [39,41] for conservative finite
difference methods is extended to a more general form of the
hydrostatic balance that includes, as specific cases, the isothermal

equilibrium [41], as well as other examples of stratified atmosphere
encountered in the literature. The fifth-order WENO and CRWENO
schemes are used in this study; however, the balanced formulation
may be used with other discretization schemes expressed in the
conservative finite difference form. In the absence of gravitational
forces, the proposed algorithm reduces to the standard finite
difference discretization of the Euler equations. One of the
motivations for this approach is to develop a unified numerical
framework for both aerodynamic and atmospheric flows. Explicit,
multistage Runge–Kuttamethods are used for time integration; in the
future, efficient semi-implicit methods [10,18] will be explored. The
ability of the algorithm to maintain the hydrostatically balanced
equilibrium to machine precision is demonstrated. The algorithm is
verified by solving benchmark atmospheric flow problems, and the
results are compared with those obtained with two operational
weather prediction solvers: Weather Research and Forecasting
(WRF) [16] and Nonhydrostatic Unified Model of the Atmosphere
(NUMA) [9].
The outline of the paper is as follows. Section II describes the

governing equations. The numerical method, including the well-
balanced formulation, is described in Sec. III. The algorithm is
verified and results for benchmark flow problems are presented in
Sec. IV. The Appendix contains three specific examples of the
general well-balanced formulation.

II. Governing Equations

The dynamics of atmospheric flows are governed by the Navier–
Stokes equations [26], with the addition of gravitational and Coriolis
forces as source terms. The effects of viscosity are insignificant, and
the inviscid Euler equations [25] are solved. Various equation sets
have been used in the literature [9,10]. The algorithm proposed here
solves the Euler equations stated as the conservation of mass,
momentum, and energy. Mesoscale flows are considered, and
Coriolis forces are neglected. The governing equations are

∂ρ
∂t

� ∇ · �ρu� � 0 (1)

∂�ρu�
∂t

� ∇ · �ρu ⊗ u� pId� � −ρg (2)

∂e
∂t

�∇ · �e� p�u � −ρg · u (3)

where ρ is the density, u is the velocity vector,p is the pressure, and g
is the gravitational force vector (per unit mass). Id denotes the
identity matrix of size d, where d is the number of space dimensions.
The energy is given by

e � p

γ − 1
� 1

2
ρu · u (4)

where γ is the specific heat ratio. The equation of state relates the
pressure, density, and temperature as p � ρRT, where R is the
universal gas constant and T is the temperature. Two additional
quantities of interest in atmospheric flows are the Exner pressure π
and the potential temperature θ, defined as

π �
�
p

p0

�γ−1
γ

; and θ � T

π
(5)

respectively. The pressure at a reference altitude is denoted by p0.
Equations (1–3) may be nondimensionalized as follows:

x� � x

L∞
; u� � u

a∞
; t� � t

L∞∕a∞
;

ρ� � ρ

ρ∞
; p� � p

ρa2∞
; g� � g

a2∞∕L∞
(6)
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where the subscript∞ denotes reference quantities, the superscript �
denotes nondimensionalized variables, L∞ is a characteristic length
scale, and a � �����������

γp∕ρ
p

is the speed of sound. The governing
equations, expressed in terms of the nondimensionalized variables,
are

∂ρ�

∂t�
� ∇ · �ρ�u�� � 0 (7)

∂�ρ�u��
∂t�

� ∇ · �ρ�u� ⊗ u� � p�Id� � −ρ�g� (8)

∂e�

∂t�
� ∇ · �e� � p��u� � −ρ�g� · u� (9)

where the ∇ operator now denotes derivatives with respect to the
nondimensionalized vector x�. Equations (7–9) are identical in form
to Eqs. (1–3). Thus, the same equations are used to solve both
nondimensional and dimensional problems. Subsequent discussions
describing the numerical discretization do not distinguish between
the dimensional and nondimensional equations, and the superscript �
is omitted for convenience.

III. Numerical Method

This paper considers two-dimensional flows with gravity acting
along the y dimension; however, the numerical methodology and the
well-balanced formulation can be trivially extended to three-
dimensional flows. Equations (1–3) constitute a hyperbolic systemof
partial differential equations and are discretized by a conservative
finite difference method. The governing equations can be expressed
as a hyperbolic conservation law:

∂q
∂t

� ∂F�q�
∂x

� ∂G�q�
∂y

� s�q� (10)

where the state vector, the flux vectors along x and y, and the source
terms are

q �

2
66664

ρ

ρu

ρv

e

3
77775; F �

2
66664

ρu

ρu2 � p

ρuv

�e� p�u

3
77775; G �

2
666664

ρv

ρuv

ρv2 � p

�e� p�v

3
777775;

s �

2
666664

0

0

−ρg

−ρvg

3
777775 (11)

The Cartesian velocity components are u and v, and g is the
gravitational force (per unit mass). Figure 1 shows part of a two-
dimensional Cartesian grid around the grid point �i; j� whose spatial
coordinates are (xi � iΔx, yj � jΔy) along with the neighboring
grid points and the cell interfaces. A conservative spatial
discretization [42,43] of Eq. (10) on this grid yields a semidiscrete
ordinary differential equation in time,

dqij
dt

� 1

Δx
�f̂ i�1∕2;j − f̂ i−1∕2;j� �

1

Δy
�ĝi;j�1∕2 − ĝi;j−1∕2� � sij

(12)

where qij � q�xi; yj� is the cell-centered solution, �xi � iΔx; yj �
jΔy� are the spatial coordinates of a grid point, and i; j denote the grid
indices. The numerical approximation to the flux function at the cell
interfaces f̂ i�1∕2;j � f̂�xi	1∕2;j�, ĝi;j�1∕2 � ĝ�yi;j	1∕2� satisfies

∂F
∂x

����
xi;yj

� 1

Δx
�f̂�xi�1∕2;j; t� − f̂�xi−1∕2;j; t�� �O�Δxr� (13)

∂G
∂y

����
xi;yj

� 1

Δy
�ĝ�yi;j�1∕2; t� − ĝ�yi;j−1∕2; t�� �O�Δyr� (14)

for an rth-order spatial discretizationmethod, and thus f̂ and ĝ are the
primitives ofF andG, respectively. The discretized source term sij in
Eq. (12) is expressed as its cell-centered value, and this naive

treatment does not preserve the hydrostatic equilibrium [41] except in
the limit Δx → 0. The treatment of the source term for a well-

balanced formulation is discussed in subsequent sections.
Equation (12) can be rewritten as

d ~q

dt
� L� ~q� (15)

where ~q � �qij; 1 ≤ i ≤ Ni; 1 ≤ j ≤ Nj� is the entire solution vector
on a grid with Ni × Nj points, and L denotes the right-hand-side

operator comprising the discretized flux and source terms.

Equation (15) is integrated in time with multistage explicit Runge–

Kutta schemes, expressed as follows:

Q�s� � ~qn � Δt
Xs−1
t�1

astL�Q�t��; s � 1; · · · ; S (16)

~qn�1 � ~qn � Δt
XS
s�1

bsL�Q�s�� (17)

where S is the number of stages,Q�s� is the sth-stage value, ast and bs
are the coefficients of the Butcher table [44], and the superscripts n
and n� 1 denote the time levels tn � nΔt and tn�1 � �n� 1�Δt,
respectively. The strong-stability-preserving third-order Runge–

Kutta (SSPRK3) [45] and the classical fourth-order Runge–Kutta

(RK4) schemes are used in this study; their Butcher tables are given

by

(18)

respectively.

Fig. 1 Illustration of a two-dimensional Cartesian grid with the grid
points (cell centers) and cell interfaces on which Eq. (10) is discretized

with a conservative finite difference formulation. The gray shaded region
represents a discrete cell.
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A. Reconstruction

The reconstruction step computes the numerical flux primitives

f̂ i	1∕2;j and ĝi;j	1∕2 in Eq. (12) from the cell-centered values of the
flux functions F�q� and G�q�, respectively. This section describes
the approximation of a scalar, one-dimensional function primitive
at the cell interface f̂j�1∕2 � f̂�xj�1∕2� from the cell-centered values

of the function fj � f�xj�. It is extended to multiple dimensions by
carrying out a one-dimensional reconstruction at the interface along
the grid line normal to that interface. Vector quantities are
reconstructed in a componentwise manner where the reconstruction

process described later is applied to each component of the vector
independently. The fifth-order WENO [29] and CRWENO [31]
schemes are used in this study.
The fifth-order WENO scheme (WENO5) is constructed by

considering three third-order accurate interpolation schemes for the
numerical flux f̂j�1∕2:

f̂1j�1∕2 �
1

3
fj−2 −

7

6
fj−1 �

11

6
fj; c1 �

1

10
(19)

f̂2j�1∕2 � −
1

6
fj−1 �

5

6
fj �

1

3
fj�1; c2 �

6

10
(20)

f̂3j�1∕2 �
1

3
fj �

5

6
fj�1 −

1

6
fj�2; c3 �

3

10
(21)

where ck, k � 1; 2; 3 are the optimal coefficients. Multiplying
Eqs. (19–21) by the corresponding ck and taking the sum yields a
fifth-order interpolation scheme,

f̂j�1∕2 �
1

30
fj−2 −

13

60
fj−1 �

47

60
fj �

27

60
fj�1 −

1

20
fj�2 (22)

The optimal coefficients ck are replaced by nonlinear weights (ωk,

k � 1; 2; 3), and the WENO5 scheme is the weighted sum of
Eqs. (19–21) with these nonlinear weights:

f̂j�1∕2 �
ω1

3
fj−2 −

1

6
�7ω1 � ω2�fj−1 �

1

6
�11ω1 � 5ω2 � 2ω3�fj

� 1

6
�2ω2 � 5ω3�fj�1 −

ω3

6
fj�2 (23)

Theweights are evaluated based on the smoothness of the solution
[46],

ωk �
αkP
k αk

; αk � ck

�
1�

�
τ

ϵ� βk

�
2
�

(24)

where

τ � �fj−2 − 4fj−1 � 6fj − 4fj�1 � fj�2�2 (25)

The parameter ϵ� 10−6 prevents division by zero, and the

smoothness indicators (βk) are given by

β1 �
13

12
�fj−2 − 2fj−1 � fj�2 �

1

4
�fj−2 − 4fj−1 � 3fj�2

(26)

β2 �
13

12
�fj−1 − 2fj � fj�1�2 �

1

4
�fj−1 − fj�1�2 (27)

and β3 �
13

12
�fj − 2fj�1 � fj�2�2 �

1

4
�3fj − 4fj�1 � fj�2�2

(28)

Other definitions for the nonlinear weights exist in the literature

[47–49] as well as a comparison of the nonlinear properties of the

WENO5 scheme with these weights [33]. When the solution is

smooth, the nonlinear weights converge to the optimal coefficients

(ωk → ck), andEq. (23) reduces toEq. (22). The scheme is fifth-order

accurate for such solutions. Across and near discontinuities, the

weights corresponding to the stencil containing the discontinuity

approach zero, and Eq. (23) represents an interpolation scheme with

its stencil biased away from the discontinuity. Nonoscillatory

solutions are thus obtained.
The fifth-order CRWENO scheme (CRWENO5) [31] is similarly

constructed by considering three third-order accurate compact

interpolation schemes [32] for the numerical flux f̂j�1∕2:

2

3
f̂1j−1∕2 �

1

3
f̂1j�1∕2 �

1

6
�fj−1 � 5fj�; c1 �

2

10
(29)

1

3
f̂2j−1∕2 �

2

3
f̂2j�1∕2 �

1

6
�5fj � fj�1�; c2 �

5

10
(30)

2

3
f̂3j�1∕2 �

1

3
f̂3j�3∕2 �

1

6
�fj � 5fj�1�; c3 �

3

10
(31)

where ck, k � 1; 2; 3 are the optimal coefficients. A fifth-order

compact scheme is obtained by multiplying Eqs. (29–31) by their

corresponding optimal coefficient ck and adding

3

10
f̂j−1∕2 �

6

10
f̂j�1∕2 �

1

10
f̂j�3∕2 �

1

30
fj−1 �

19

30
fj �

1

3
fj�1

(32)

The CRWENO5 scheme is constructed by replacing the optimal

coefficients ck by nonlinear weights ωk. It can be expressed as

�
2

3
ω1 �

1

3
ω2

�
f̂j−1∕2 �

�
1

3
ω1 �

2

3
�ω2 � ω3�

�
f̂j�1∕2

� 1

3
ω3f̂j�3∕2

� ω1

6
fj−1 �

5�ω1 � ω2� � ω3

6
fj �

ω2 � 5ω3

6
fj�1

(33)

The weights ωk are computed by Eqs. (24) and (26–28). The

resulting scheme, given by Eq. (33), is fifth-order accurate when the

solution is smooth (ωk → ck) and reduces to Eq. (32). Across and

near discontinuities, the weights corresponding to the stencils

containing the discontinuity approach zero, and a biased (away from

the discontinuity) compact scheme is obtained. Equation (33) results

in a tridiagonal system of equations that must be solved at each time-

integration step or stage; however, the additional expense is justified

by the higher accuracy and spectral resolution of the compact scheme

[31,33,34]. An efficient and scalable implementation of the

CRWENO5 scheme was recently proposed in [35,50] and is used in

this study.
The solution of a hyperbolic system is composed of waves

propagating at their characteristic speeds along their characteristic

directions, and thus the final flux at the interface is an appropriate

combination of the left- and right-biased fluxes. The description of

the preceding WENO5 and CRWENO5 schemes considered a left-

biased reconstruction of the scalar flux; the corresponding right-

biased reconstruction can be obtained by reflecting the expressions

around the interface j� 1∕2. The upwinding schemes of Roe [51,52]

and Rusanov [52,53] are used in this study. Roe’s scheme is

expressed as
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f̂ j�1∕2 �
1

2
�f̂L

j�1∕2 � f̂R
j�1∕2 − jA�q̂Lj�1∕2; q̂

R
j�1∕2�j�q̂Rj�1∕2 − q̂Lj�1∕2��

(34)

where

jA�q̂Lj�1∕2; q̂
R
j�1∕2�j � Xj�1∕2jΛj�1∕2jX−1

j�1∕2 (35)

The eigenvaluesΛ and the eigenvectorsX,X−1 are evaluated at the

interface from the Roe-averaged flow variables. The superscripts L
and R indicate the left- and right-biased interpolations, respectively.

Rusanov’s scheme is given by

f̂ j�1∕2 �
1

2
�f̂L

j�1∕2 � f̂
R
j�1∕2 − �max ν

j;j�1
��q̂Rj�1∕2 − q̂Lj�1∕2�� (36)

The dissipation factor is ν � a� juj, where a is the speed of

sound, and u is the flow velocity.We note that q̂L;Rj�1∕2 in Eqs. (34) and

(36) are the left- and right-biased interface values for q that are

reconstructed in the same manner as f̂
L;R
j�1∕2.

B. Well-Balanced Formulation

A hyperbolic balance law, such as Eq. (10), admits steady-state

solutions where the flux derivative is exactly balanced by the source

term. For atmospheric flows, the gravitational force on the fluid is

balanced by the pressure gradient, resulting in the hydrostatic

balance. The numerical algorithm must preserve this balance to

machine precision because errors have the potential to overwhelm

physically relevant perturbations to the balance. In this section, a

well-balanced formulation of the finite difference discretization of

Eq. (10) is presented; this formulation reduces to the balanced

discretization previously proposed [41] for the specific case of an

isothermal hydrostatic balance. Although the formulation is

described for two-dimensional flows with gravity acting along the

y dimension, it can be easily extended to three dimensions and for

domains where the gravity may not be aligned with a specific

dimension.
Steady atmospheric flow in hydrostatic balance can be expressed

in the following general form:

u � constant; v � 0; ρ � ρ0ϱ�y�; p � p0φ�y�
(37)

where the subscript 0 indicates the flow variables at a reference

altitude, and ϱ, φ are scalar functions. The flow quantities are a

function of y only because the gravitational force is assumed to act

along the y direction. The pressure and density at the reference

altitude are related by the equation of state p0 � ρ0RT0. At

equilibrium, Eq. (10) reduces to

dp

dy
� −ρg (38)

Therefore, by substituting Eq. (37) in Eq. (38) and considering the

equation of state, the functions ϱ�y� and φ�y� satisfy

RT0�ϱ�y��−1φ 0�y� � −g (39)

where φ 0�y� is the y derivative of φ�y�. The necessity of a well-

balanced algorithm can be explained as follows. Let a general, linear

finite difference approximation to the derivative of an arbitrary

function ϕ�y� be expressed as

∂ϕ
∂y

����
y�yj

≈D�ϕ� ≡ 1

Δy

Xn
k�−m

σDk ϕj�k (40)

where m and n are integers defining the stencil �j −m; j −m� 1; ·
· · ; j� n − 1; j� n� of the finite difference operator D, and σDk are

the stencil coefficients. With this notation, the discretized form of

Eq. (38) at a grid point can be written as

D�p�j � −�ρg�j (41)

where the subscript j indicates the corresponding terms evaluated at

the jth grid point. If D is a consistent finite difference operator,

Eq. (41) is exactly satisfied asΔx → 0. On a finite grid withΔx ≠ 0,
however, the error in satisfying Eq. (41) is nonzero and is related to

the spatial discretization error of the finite difference operator D.
Awell-balanced algorithm must satisfy Eq. (38) in its discretized

form on a finite grid (Δx ≠ 0) as well; thus, the discretized flux

derivative must exactly balance the discretized source term. The first

step modifies Eq. (10) as

∂q
∂t

� ∂F�q�
∂x

� ∂G�q�
∂y

� s��q; y� (42)

where s� � �0; 0; ρRT0�ϱ�y��−1φ 0�y�; ρvRT0�ϱ�y��−1φ 0�y��T . The

relationship between ϱ�y� and φ�y�, given by Eq. (39), ensures that

Eq. (42) is consistent with Eq. (10). The source terms are thus

rendered in a form similar to that of the flux term [39,41]. With this

modification, Eq. (38) can be rewritten as

dp

dy
� ρRT0�ϱ�y��−1φ 0�y� (43)

It can then be discretized by using the notation in Eq. (40) to yield

DG�p� − ρRT0fϱ�y�g−1Ds� �φ�y�� � 0 (44)

where DG and Ds� are the finite difference operators used to

approximate the y derivatives of the flux function G and the source

term s�, respectively. Although Eq. (44) holds true forΔx → 0 ifDG

andDs� are both consistent finite difference operators, it is not exactly

satisfied for Δx ≠ 0 with the error being related to the spatial

discretization errors of DG and Ds� . However, Eq. (44) is exactly

satisfied for Δx ≠ 0 if

DG � Ds� � D (45)

Substituting Eq. (45) and exploiting the linearity of D, the left-

hand side of Eq. (44) reduces to

D�p − ρRT0fϱ�y�g−1φ�y�� � D�p0φ�y� − ρ0ϱ�y�RT0fϱ�y�g−1φ�y��
� 0 (46)

The term ρRT0fϱ�y�g−1 � p0 in Eq. (44) is constant, and hence it

can be moved inside the discretized derivative operator D.
Equation (45) implies that a linear finite difference algorithm to solve

Eq. (42) is well balanced (preserves hydrostatically balanced steady

states to machine precision) if the flux derivative, and the modified

source terms are discretized by the same linear operator.
The WENO5 and CRWENO5 schemes are nonlinear finite

difference operators because their coefficients are solution-

dependent. The standard procedure to compute the discretized flux

derivative along ywith these schemes can be summarized as follows:
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ĜL;R
j�1∕2 � RL;R

G �G� ≡
Xn
k�−m

σ̂k�ω�Gj�k (47)

Ĝj�1∕2 �
1

2
�ĜL

j�1∕2 � ĜR
j�1∕2 � jAj�1∕2j�q̂Lj�1∕2 − q̂Rj�1∕2�� (48)

or Ĝj�1∕2 �
1

2
�ĜL

j�1∕2 � ĜR
j�1∕2 � �max ν

j;j�1
��q̂Lj�1∕2 − q̂Rj�1∕2��

(49)

∂G
∂y

����
y�yj

≈
1

Δy
�Ĝj�1∕2 − Ĝj−1∕2� (50)

where j is the grid index along the y coordinate (the index along the x
coordinate is suppressed for convenience of notation), RL;R

G are the
reconstruction operators with m and n defining the stencil bounds,
and the coefficients for the stencil points σ̂k are functions of the
solution-dependent nonlinear weights ω. Equations (23) and (33),
representing the WENO5 and CRWENO5 schemes, can be
represented through this operator. The subscript G denotes that the
nonlinear weightsω are computed based onG�q�. The superscriptsL
and R denote the left- and right-biased operators, respectively. The
additional steps needed to construct a well-balanced algorithm are
now described.
The derivative of φ�y� in the source term of Eq. (42) is discretized

in the same manner as the flux derivative, summarized as follows:

φ̂L;R
j�1∕2 � RL;R

G �φ� ≡
Xn
k�−m

σ̂kφj�k (51)

φ̂j�1∕2 �
1

2
�φ̂L

j�1∕2 � φ̂R
j�1∕2� (52)

∂φ
∂y

����
y�yj

≈
1

Δy
�φ̂j�1∕2 − φ̂j−1∕2� (53)

where the vector φ is simply given by φ � �0; 0;φ�y�;φ�y��T. The
remaining terms in the source s� are evaluated at the cell center j. The
interpolation operators in Eqs. (47) and (51) are both RG; the
interface values of both G and φ are computed with the same
interpolation operator. This is achieved in the WENO5 and
CRWENO5 schemes by calculating the weights based on the
smoothness of the flux function G�q� and using these weights to
compute the interface values of both G and φ at a given time-
integration step or stage.
The final step in the construction of a well-balanced method is the

suitable modification of the dissipation term in the upwinding step.
The Roe and Rusanov schemes, given by Eqs. (48) and (49), are
modified as follows.
Roe:

Ĝj�1∕2 �
1

2
�ĜL

j�1∕2 � ĜR
j�1∕2 � κjAj�1∕2j�q̂�;Lj�1∕2 − q̂�;Rj�1∕2�� (54)

Rusanov:

Ĝj�1∕2 �
1

2
�ĜL

j�1∕2 � ĜR
j�1∕2 � κ�max ν

j;j�1
��q̂�;Lj�1∕2 − q̂�;Rj�1∕2�� (55)

where κ � maxj;j�1φ�y�, and q̂�;Lj�1∕2 and q̂
�;R
j�1∕2 are respectively the

left- and right-biased interpolation (at the interface) of a modified
state vector q� � �ϱfρ�y�g−1; ρufϱ�y�g−1; ρvfϱ�y�g−1; e��T. The
modified energy e� is given by

e� � pfφ�y�g−1
γ − 1

� 1

2
ρfϱ�y�g−1�u2 � v2� (56)

At steady state, q� is a constant, and the dissipation term in
Eqs. (54) and (55) is zero with this modification (q̂�;Lj�1∕2 � q̂�;Rj�1∕2).
Discretization of the flux derivatives in Eq. (42) by Eq. (47),

Eq. (54), or Eq. (55) and Eq. (50) as well as evaluation of the source
term as Eqs. (51–53) results in the following discretized form of the
steady-state equation [Eq. (43)] at grid point j:

p0

�
φ̂j�1∕2 − φ̂j−1∕2

Δy

�
� ρjRT0fϱ�yj�g−1

�
φ̂j�1∕2 − φ̂j−1∕2

Δy

�
(57)

The interface approximation of the scalar function φ�y� is denoted
by φ̂j�1∕2. It is evaluated on the left-hand side through Eq. (47) and
Eq. (54) or Eq. (55) and is evaluated on the right-hand side through
Eqs. (51) and (52). Equation (57) is exactly satisfied if the operator
RG is linear. Although RG represents nonlinear finite difference
operators, given by Eqs. (23) and (33), the nonlinearity of these
schemes arises from the solution-dependent weights ωk. Within a
time-integration step or stage, these weights are computed and fixed,
and the operator RG is essentially linear. Therefore, Eq. (57) is
exactly satisfied.

C. Summary

The steps to construct a well-balanced conservative finite
difference algorithm are summarized as follows.
1) The governing equations are modified as Eq. (42).
2) The flux derivatives are computed through Eq. (47), Eq. (54) or

Eq. (55), and Eq. (50).
3) The derivatives in the modified source term are computed

through Eqs. (51–53); the remaining terms are evaluated at the cell
centers.
The resulting algorithm preserves a hydrostatically balanced

steady state to machine precision. The modified procedure to
compute the flux derivative is applied to both the x and y dimensions;
in the absence of gravitational forces along a particular dimension, for
example g � 0 ⇒ ϱ�y� � φ�y� � 1, it reduces to the standard flux
computation given by Eqs. (47–50). Three examples of the steady
state [Eq. (37)] that occur in atmospheric flowproblems are presented
in the Appendix as well as the resulting expressions for the modified
source term in Eq. (42) and modified solution in Eqs. (54) and (55).

IV. Verification and Results

This section demonstrates the performance of the numerical
algorithm and verifies the computed results with those in the literature.
The ability of the algorithm to preserve the hydrostatic balance to
machine precision and accurately capture small perturbations is
demonstrated. Comparisons aremadewith a naive discretization of the
source term to show the necessity for the well-balanced formulation.
Further, benchmark atmospheric flow problems are solved, and the
results obtained agree with those obtained with solvers based on other
forms of the governing equations and using different discretization
techniques. Both dimensional and nondimensional problems are
considered; the descriptions of the former have the relevant units
specified. One-dimensional problems in y are solved with the two-
dimensional code by specifying an arbitrary domain size in the x
dimension; the number of grid points in x is taken as the number of
ghost points required to implement the boundary treatment, and
periodic boundary conditions are applied along this dimension.

A. Well-Balanced Tests

A one-dimensional problem is initially considered to demonstrate
the need for a well-balanced discretization. The initial flow is static
and in hydrostatic balance. An isothermal equilibrium is considered
with a sinusoidal gravitational field potential [41,54]

ϕ � −
1

2π
sin�2πy� (58)
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specified on a periodic domain 0 ≤ y < 1. The gravitational force in
Eq. (10) is g�y� � ϕy (where the subscript denotes the derivative),
and the steady state is given by

ρ � exp�−ϕ�; p � exp�−ϕ� (59)

The specific heat ratio is γ � 1.4, and the solutions are obtained at
a final time of 1.0. This problem is solved with the balanced
discretization as well as with a naive discretization that can be
described by Eq. (12), where the source term is discretized as
sij � �0; 0;−�ρg�ij;−�ρvg�ij�T , and the flux terms are discretized by
the standard WENO5 and CRWENO5 schemes. The Roe scheme is
used for upwinding: Eq. (34) for the naive algorithm, and Eq. (54) for
the balanced algorithm.Because the problem is steady, the error in the
final solution is defined as

kϵk�·� �
kq�x; tf� − q�x; 0�k�·���q�x; 0����·� (60)

where tf denotes the final time. Figure 2 shows the L2 norm of the
error as a function of the grid resolutionΔy for the solutions obtained
with the balanced and naive implementations. The RK4 method is
used for time integration with a time step of 10−3 for the cases. The
naive implementation results in a nonzero error for all the grid sizes,
which shows that it is unable to preserve the hydrostatically balanced
equilibrium. In addition, the error in preserving the equilibrium
shows fifth-order convergence as the grid is refined for both the
WENO5 and CRWENO5 schemes. The errors for the CRWENO5
schemes are an order of magnitude lower than those of the WENO5
scheme at all grid resolutions. These observations are consistent with
the numerical properties of these schemes [31]. Therefore, the error in
preserving the hydrostatic balance is indeed the spatial discretization
error of the algorithm, as discussed regarding Eq. (41). The balanced
implementation preserves the steady state to machine precision for
both the WENO5 and CRWENO5 schemes.
The ability of the proposed formulation to preserve two examples

of hydrostatic balance encountered in atmospheric flows is tested.
These correspond to the second and third cases in the Appendix; the

specific flow conditions are described later. The initial solution is
specified as the balanced steady-state flow. The specific heat ratio is
γ � 1.4 in all the examples.

1. Case 1

The first case corresponds to a stratified atmosphere with constant
potential temperature θ (example 2 in the Appendix). The initial
solution is specified by Eq. (A4) with u � v � 0 m∕s−1,
R � 287.058 J∕kg · K, T � 300 K, p0 � 105 N∕m2, and g �
9.8 m∕s2. The domain is 1000 × 1000 m2 discretized by 51 × 51
points. Inviscid wall conditions are specified on all boundaries. This
case represents the hydrostatic equilibrium for the two-dimensional
rising thermal bubble problem [9]. A time step of 0.02 s is taken, and
the solution is evolved until a final time of 1000 s with the RK4
method.

2. Case 2

The second case corresponds to a stratified atmosphere with a
specified Brunt–Väisälä frequencyN (example 3 in the Appendix).
The initial solution is specified by Eq. (A11) with N � 0.01∕s,
u � 20 m∕s, v � 0 m∕s, R � 287.058 J∕kg · K, T � 300 K,
p0 � 105 N∕m2, and g � 9.8 m∕s2. The domain is 300; 000 ×
10; 000 m2 discretized by 1200 × 50 points. Periodic boundaries are
specified along x, and inviscid wall boundaries are specified along y.
This case represents the hydrostatic equilibrium for the inertia-
gravity wave problem [9]. A time step of 0.25 s is taken, and the
solution is evolved until a final time of 3000 s with the SSPRK3
method.
The two cases are solvedwith the balanced formulation aswell as a

naive discretization of the source term. The Roe scheme is used for
upwinding in all the cases. Table 1 shows theL1,L2, andL∞ norms of
the error defined by Eq. (60).When the balanced formulation is used,
the errors are zero to machine precision for both the CRWENO5 and
WENO5 schemes in all the cases. However, the naive discretization
of the source term results in a significant error in preserving the steady
state. Thus, these tests demonstrate that the balanced algorithm is
necessary to accurately preserve the hydrostatic balance.
A one-dimensional problem [41] is used to test the accurate

simulation of small perturbations to the hydrostatic balance. The
initial solution represents a pressure perturbation to an isothermal
hydrostatic equilibrium with a constant gravitational field of unit
magnitude,

ρ�y;0� � exp�−y�;
p�y;0� � exp�−y� � η exp�−100�y− 0.5�2�; u�y;0� � 0 (61)

on a unit domain y ∈ �0; 1� with extrapolative boundary conditions.
The specific heat ratio is γ � 1.4. Solutions are obtained at a final
time of 0.25 with the RK4 method, and a time step of 0.0025
[corresponding to a Courant–Friedrichs–Lewy (CFL) number of
∼0.6]. Figure 3 shows the initial and final pressure perturbations
p�y; t� − exp�−y�, obtained with the WENO5 and CRWENO5
schemes on a grid with 200 points. The reference solutions are
obtained with the CRWENO5 scheme on a grid with 2000 points.
Two values of the perturbation strength η are considered: 10−2 and
10−4. The computed solutions agreewell with the reference solutions
as well as with results reported in the literature [41]. These results
demonstrate that the algorithm is able to accurately capture both
strong and weak perturbations to the balanced steady state.

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-03 1e-02 1e-01

|ε|
2

Δy

WENO5   - Naive
CRWENO5 - Naive

WENO5   - Balanced
CRWENO5 - Balanced

Fifth order

Fig. 2 Relative error (L2 norm) with respect to the initial solution for a
steady-state problem with naive and balanced implementations of the
algorithm.

Table 1 Relative error with respect to the initial solution

Case Algorithm

WENO5 CRWENO5

kϵk1 kϵk2 kϵk∞ kϵk1 kϵk2 kϵk∞
1 Balanced 6.02E − 15 7.11E − 15 1.31E − 14 1.50E − 14 1.53E − 14 2.09E − 14
1 Naive 3.75E − 02 4.39E − 02 7.34E − 02 2.86E − 02 3.37E − 02 6.17E − 02
2 Balanced 3.63E − 15 4.35E − 15 8.15E − 15 1.58E − 14 1.83E − 14 6.11E − 14
2 Naive 1.62E − 02 1.60E − 02 1.72E − 02 1.89E − 02 1.86E − 02 1.99E − 02
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Fig. 3 Pressure perturbation at final time 0.25 on a grid with 200 points (every fourth grid point is shown).
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Fig. 4 Solution to the modified Sod's shock tube problem obtained on a grid with 101 points (every second point is shown).
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B. Sod’s Shock Tube with Gravitational Forcing

Sod’s shock tube test [55] is a benchmark one-dimensional

Riemann problem. A modified test case with gravitational forcing

[41] is solved. The initial solution is given by

�ρ; v; p� �
	 �1; 0; 1� y < 0.5

�0.125; 0; 0.1� y ≥ 0.5
(62)

on a unit domain y ∈ �0; 1� discretized by a grid with 101 points. The
specific heat ratio is γ � 1.4. Reflective boundary conditions are

applied at both ends of the domain. The flow is subjected to a
gravitational field g � 1. Solutions are obtained at a final time of 0.2
with the SSPRK3 method and a time step of 0.002 (corresponding to
a CFL of ∼0.4). The Roe upwinding scheme is used. Figure 4 shows
the solutions obtained with the WENO5 and CRWENO5 schemes;
the reference solution is obtained with the CRWENO5 scheme on a
grid with 2001 points. The computed solutions agree well with the
reference solution and results in the literature [41].

C. Inertia-Gravity Waves

The inertia-gravity wave [9,56] is a two-dimensional benchmark
for atmospheric models that involves the evolution of a potential
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Fig. 5 Inertia-gravity waves: potential temperature perturbation contours for the solution obtained with the CRWENO5 scheme on a grid with

1200 × 50 points.
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temperature perturbation. The domain consists of a channel with
dimensions 300;000m × 10;000 m. Periodic boundary conditions
are applied on the left (x � 0 m) and right (x � 300;000 m)
boundaries, whereas inviscid wall boundary conditions are applied
on the bottom (y � 0 m) and top (y � 10;000 m) boundaries. The
initial flow is a perturbation added to a stratified atmosphere in
hydrostatic balance (example 3 in the Appendix). The Brunt–Väisälä
frequency is specified as N � 0.0 1∕s, the gravitational force per
unit mass is 9.8 m∕s2, and the horizontal flow velocity is u �
20 m∕s throughout the domain. The reference pressure and
temperature at y � 0 m are 105 N∕m2 and 300 K, respectively. The
perturbation is added to the potential temperature, specified as

Δθ�x; y; t � 0� � θc sin

�
πcy

hc

��
1�

�
x − xc
ac

�
2
�−1

(63)

where θc � 0.01 K is the perturbation strength, hc � 10;000 m is
the height of the domain, ac � 5000 m is the perturbation half-
width, xc � 100;000 m is the horizontal location of the perturbation,
and πc ≈ 3.141592654 is the Archimedes (trigonometric) constant.
The evolution of the perturbation is simulated until a final time
of 3000 s.
Solutions are obtained with theWENO5 and CRWENO5 schemes

on a grid with 1200 × 50 points that results in a resolution of 250m in
x and 200 m in y. The SSPRK3 method is used for time integration
with a time step of 0.25 s (corresponding to a CFL of ∼0.4). The
Rusanov scheme is used for upwinding. Figure 5 shows the potential
temperature perturbation Δθ for the initial, intermediate, and final
solutions. The results agree well with those in the literature
[17,20,24,56]. The initial perturbation is centered at x � 10;000 m,
whereas the flow features in the final solution are centered at
x � 160;000 m; this translation is expected because of the mean
horizontal velocity of 20 m∕s.
Figure 6 shows the cross-sectional potential temperature

perturbation at an altitude of y � 5000 m. The solutions obtained
with the WENO5 and CRWENO5 schemes are compared with two
reference solutions: NUMA and WRF. NUMA [9] refers to a
spectral-element solver, and the solution is obtained with 10th-order

polynomials and 250 m effective grid resolution. WRF [16] uses a
finite difference discretization, and the solution is obtained with a
fifth-order upwind scheme in x and a third-order upwind scheme in y
[17]. Good agreement is observed with NUMA, whereas there is a
slight difference in the perturbation propagation speed with WRF.
Figure 7 shows the potential temperature contours of the solution
after four time steps (final time of 1 s), where a naive treatment of the
source term is used (the cell-centered values of the density and
velocity are used to compute it). The horizontal contours near the top
and the bottom boundaries are the errors resulting from the
hydrostatic imbalance, and they overwhelm the solution. This result
demonstrates the need for the well-balanced formulation.

D. Rising Thermal Bubble

The two-dimensional rising thermal bubble [9] is another
benchmark for atmospheric flows that simulates the dynamics of a
warm bubble. The square domain of dimensions 1000m × 1000 m is
specified with inviscid wall boundary conditions on all sides. The
initial solution is a stratified atmosphere in hydrostatic balance
corresponding to example 2 in the Appendix. The constant potential
temperature (and thus the reference temperature at y � 0 m) is
300 K, and the reference pressure is 105 N∕m2. The ambient flow is
at rest and experiences a constant gravitational force per unit mass of
9.8 m∕s2. The warm bubble is added as a potential temperature
perturbation specified as

Δθ�x; y; t � 0� �
(

0 r > rc
θc
2

h
1� cos



πcr
rc

�i
r ≤ rc

;

r �
�������������������������������������������
�x − xc�2 � �z − zc�2

q
(64)

where θc � 0.5 K is the perturbation strength, �xc; yc� �
�500; 350� m is the initial location at which the bubble is centered,
rc � 250 m is the radius of the bubble, and πc is the trigonometric
constant. The flow is simulated to a final time of 700 s.
Figure 8 shows the solution obtained on a grid with 4012 points,

corresponding to a resolution of 2.5 m. The Rusanov scheme is used
for upwinding. The RK4 method is used for time integration with a
time step of 0.005 s (corresponding to amaximumCFL of∼0.7). The
potential temperature perturbation Δθ is shown at 0 (initial bubble),
250, 500, and 700 s. The warm bubble rises as a result of buoyancy.
The temperature differential within the bubble causes velocity
gradients that shear and deform the bubble to a mushroomlike cloud.
At the top boundary, the deformed bubble interacts with the inviscid
wall to form a thin layer ofwarm air, whereas the trailing edges roll up
due to the local temperature difference. The solution agrees with the
inviscid results reported in the literature [8,9].
The solutions obtained by the proposed algorithm are compared

with those obtained with the two-dimensional version of NUMA [9]
with the same order of accuracy and grid resolution. NUMA solves
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Fig. 7 Inertia-gravity waves: potential temperature perturbation
contours with a naive treatment of the source term at final time 1 s on a
grid with 1200 × 50 points.
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Fig. 6 Inertia-gravity waves: cross-sectional potential temperature for the solution obtained at 3000 s on a grid with 1200 × 50 points.
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the governing equations in terms of mass, momentum, and potential

temperature discretized by the continuous and discontinuous

Galerkinmethodswith spectral elements. Figures 9a and 9b show the

final solution at 700 s obtained with the WENO5 scheme on grids

with 2012 and 4012 points (5 and 2.5 m grid resolutions),

respectively. Figures 9c and 9d show the solutions obtained with

NUMA using the continuous Galerkin discretization. The domain is

discretized with 402 and 802 elements with fifth-order polynomials,

respectively, resulting in effective grid resolutions of 5 and 2.5 m.

These solutions are obtained at a CFL of ∼0.7 with the RK4 time-

integration method. Good agreement is observed for the overall flow

at both grid resolutions. Figure 10 shows the cross-sectional potential

temperature perturbation for the solutions shown in Fig. 9 along y

(x � 500 m) and x (y � 720 m). Although the solutions obtained
with NUMA exhibit smooth flow features, the WENO5 solutions
predict stronger gradients that result in qualitatively different flow
features at small length scales. As an example, WENO5 predicts a
stronger roll-up of the trailing edges at 2.5 m grid resolution at
600 ≤ 700 ≤ 720 m, as observed in Fig. 10b. This difference is due
to the treatment of subgrid-length scales. The NUMA solver
stabilizes the solution through a residual-based dynamic subgrid-
scale model [57,58] designed for large-eddy simulation, whereas the

WENO5 solution to the inviscid Euler equations relies on the linear

and nonlinear numerical diffusion to stabilize the unresolved scales.

Incorporation of a subgrid-scale model in the current solver will be

explored in the future.

x
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Fig. 8 Rising thermal bubble: potential temperature perturbation Δθ contours for the solution obtained with the WENO5 scheme on a grid with
401 × 401 points (2.5 m resolution).
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V. Conclusions

A well-balanced conservative finite difference algorithm is

proposed in this paper for the numerical simulation of atmospheric

flows. The governing equations (inviscid Euler equations) are solved

as conservation laws for mass, momentum, and energy, with no

additional assumptions; thus, they are of the same form as those that

are used in the computational aerodynamics community. The

discretization of the hyperbolic flux and the treatment of the source

term are modified so that the overall algorithm preserves

hydrostatically balanced equilibria to machine precision; this

formulation is an extension of the previous work by Xing and Shu

[41]. In the absence of gravitational forces, the algorithm reduces to

x
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Fig. 9 Rising thermal bubble: comparison of potential temperature perturbationΔθ contours at 700 s for the solution obtainedwith theWENO5 scheme
and NUMA [9] for two grid resolutions.
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Fig. 10 Rising thermal bubble: cross-sectional potential temperature perturbation Δθ for final time 700 s.
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the standard finite difference discretization of the Euler equations.
The fifth-order WENO and the CRWENO schemes are used in this
paper for spatial discretization; however, the well-balanced
formulation can be used with any conservative finite difference
methods. The ability of the proposed algorithm to preserve a
hydrostatically balanced equilibrium is demonstrated on examples of
stratified atmosphere. We show that the balanced formulation
preserves such steady states to machine precision, whereas a naive
treatment of the source term does not. Benchmark flow problems are
solved to verify the algorithm. The solutions are comparedwith those
obtained with operational, state-of-the-art atmospheric flow solvers
(WRF and NUMA), and good agreement is observed. Future work
will focus on incorporating semi-implicit and implicit time-
integration methods as well as a subgrid-scale model similar to the
models used in established atmospheric flow solvers.

Appendix A: Examples of Hydrostatically Balanced
Equilibrium States

Three examples of the well-balanced finite difference formulation
are presented. These examples are representative of the hydrostatic
equilibrium encountered in benchmark atmospheric flow problems.

AI. Example 1

The first example is the isothermal steady state. The resulting
formulation is identical to the previously proposed well-balanced
WENO scheme [41]. The steady state can be derived by assuming the
temperature T � T0 to be a constant and applying the hydrostatic
balance Eq. (38). It is given by

u � constant; v � 0;

ρ � ρ0 exp

�
−
gy

RT

�
; p � p0 exp

�
−
gy

RT

�
(A1)

where the reference density ρ0 and pressure p0 are related by the
equation of state. Thus, the functions ϱ�y� and φ�y� in Eq. (37)
are

ϱ�y� � exp

�
−
gy

RT

�
; φ�y� � exp

�
−
gy

RT

�
(A2)

The modified source term in Eq. (42) and the modified solution in
Eqs. (54) and (55) are

s� �

2
6666664

0

0

ρRT0 exp


gy
RT

�n
exp



− gy

RT

�o
y

ρvRT0 exp


gy
RT

�n
exp



− gy

RT

�o
y

3
7777775
; and

q� �

2
666666664

ρ exp


gy
RT

�
ρu exp



gy
RT

�
ρv exp



gy
RT

�
e exp



gy
RT

�

3
777777775

(A3)

AII. Example 2

The second example is a hydrostatic balance that is frequently
encountered in atmospheric flows of practical relevance [9,10,17].
The steady state is derived by specifying a stratified atmosphere with
constant potential temperature θ � T0. The hydrostatic balance is
thus expressed as

γR

γ − 1
θ
dπ

dy
� −g ⇒ ρ � ρ0

�
1 −

�γ − 1�gy
γRθ

�
1∕�γ−1�

;

p � p0

�
1 −

�γ − 1�gy
γRθ

�
γ∕�γ−1�

;

u � constant; v � 0 (A4)

where π is the Exner pressure (see Sec. II). Thus, the functions ϱ�y�
and φ�y� in Eq. (37) are

ϱ�y� �
�
1 −

�γ − 1�gy
γRθ

�
1∕�γ−1�

;

φ�y� �
�
1 −

�γ − 1�gy
γRθ

�
γ∕�γ−1�

(A5)

and the modified source term in Eq. (42) as well as the modified

solution in Eqs. (54) and (55) are

s� �

2
6664

0

0

ρRT0

n
1 − �γ−1�gy

γRθ

o−1∕�γ−1�n

1 − �γ−1�gy

γRθ

�
γ∕�γ−1�o

y

ρvRT0

n
1 − �γ−1�gy

γRθ

o−1∕�γ−1�n

1 − �γ−1�gy

γRθ

�
γ∕�γ−1�o

y

3
7775 (A6)

and

q� �

2
666664

ρ
n
1 − �γ−1�gy

γRθ

o−1∕�γ−1�
ρu

n
1 − �γ−1�gy

γRθ

o−1∕�γ−1�
ρv
n
1 − �γ−1�gy

γRθ

o−1∕�γ−1�
e�

3
777775 (A7)

where

e� � p

γ − 1

�
1 −

�γ − 1�gy
γRθ

�−γ∕�γ−1�

� 1

2
ρ

�
1 −

�γ − 1�gy
γRθ

�−1∕�γ−1�
�u2 � v2� (A8)

AIII. Example 3

The third example is a stratified atmosphere with a specified

Brunt–Väisälä frequencyN [9,56]:

N 2 � g
d

dy
�log θ� ⇒ θ � T0 exp

�
N 2

g
y

�
(A9)

Assuming hydrostatic balance, the Exner pressure is given by

π � 1� �γ − 1�g2
γRT0N 2

�
exp

�
−
N 2

g
y

�
− 1

�
(A10)

and the steady-state flow variables are

p � p0

�
1� �γ − 1�g2

γRT0N 2

	
exp

�
−
N 2

g
y

�
− 1

��
γ∕�γ−1�

(A11)
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ρ � ρ0 exp

�
−
N 2

g
y

��
1� �γ − 1�g2

γRT0N 2

	
exp

�
−
N 2

g
y

�
− 1

��
1∕�γ−1�

(A12)

u � constant; v � 0 (A13)

Thus, the functions ϱ�y� and φ�y� in Eq. (37) are

ϱ�y� � exp

�
−
N 2

g
y

��
1� �γ − 1�g2

γRT0N 2

	
exp

�
−
N 2

g
y

�
− 1

��
1∕�γ−1�

(A14)

φ�y� �
�
1� �γ − 1�g2

γRT0N 2

	
exp

�
−
N 2

g
y

�
− 1

��
γ∕�γ−1�

(A15)

The modified source term in Eq. (42) and the modified solution in

Eqs. (54,55) are

s� �

2
6664

0

0

ρRT0 exp


N 2

g y
�h

1� �γ−1�g2
γRT0N 2

n
exp



− N 2

g y
�
− 1

oi−1∕�γ−1�n

1� �γ−1�g2

γRT0N 2

n
exp



− N 2

g y
�
− 1

o�
γ∕�γ−1�o

y

ρvRT0 exp


N 2

g y
�h

1� �γ−1�g2
γRT0N 2

n
exp



− N 2

g y
�
− 1

oi−1∕�γ−1�n

1� �γ−1�g2

γRT0N 2

n
exp



− N 2

g y
�
− 1

o�
γ∕�γ−1�o

y

3
7775 (A16)

and

q� �

2
666666664

ρ exp

�
N 2

g y

��
1� �γ−1�g2

γRT0N 2

	
exp

�
− N 2

g y

�
− 1

��−1∕�γ−1�
ρu exp

�
N 2

g y

��
1� �γ−1�g2

γRT0N 2

	
exp

�
− N 2

g y

�
− 1

��−1∕�γ−1�
ρv exp

�
N 2

g y

��
1� �γ−1�g2

γRT0N 2

	
exp

�
− N 2

g y

�
− 1

��−1∕�γ−1�
e�

3
777777775

(A17)

where

e� � p

γ − 1

�
1� �γ − 1�g2

γRT0N 2

	
exp

�
−
N 2

g
y

�
− 1

��−γ∕�γ−1�
(A18)

� 1

2
ρ exp

�
N 2

g
y

��
1� �γ − 1�g2

γRT0N 2

	
exp

�
−
N 2

g
y

�
− 1

��−1∕�γ−1�
× �u2 � v2�

(A19)
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