Implicit-Explicit Time Integration for Multiscale Physics

Geophysical and Astrophysical Fluid Dynamics Seminar, Department of Applied Mathematics & Statistics, UC Santa Cruz

Debojyoti Ghosh

Center for Applied Scientific Computing

December 6, 2017

LLNL-PRES-742278

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Time Scales and Numerical Time Integration Motivation for Implicit-Explicit (IMEX) Approach

Complex physics are characterized by a large range of temporal scales

Explicit time-integration constrained by *fastest time scale in the model*

- Inefficient when resolving slow dynamics
- *Split-Explicit methods* (atmospheric flow simulations)

Implicit time-integration requires solution to *nonlinear system of equations*

- Unconditional stability
- Why pay for inverting terms we want to resolve?

Which time scales do we want to resolve? (Usually, some of them)

Implicit-Explicit (IMEX) Time Integration

Resolve scales of interest; Treat implicitly faster scales

ODE in time

Resulting from spatial discretization of PDE

$$\frac{d\mathbf{y}}{dt} = \mathcal{R}\left(\mathbf{y}\right)$$

IMEX time integration: *partition RHS*

 $\mathcal{R}\left(\mathbf{y}\right)=\mathcal{R}_{\mathrm{stiff}}\left(\mathbf{y}\right)+\mathcal{R}_{\mathrm{nonstiff}}\left(\mathbf{y}\right)$

Linear stability constraint on time step

int
$$\Delta t\left(\lambda\left[\frac{d\mathcal{R}_{\text{nonstiff}}\left(\mathbf{y}\right)}{d\mathbf{y}}\right]\right) \in \{z: |R\left(z\right)| \le 1\}$$

Time step constrained by eigenvalues (time scales) of *nonstiff component of RHS*

Additive Runge-Kutta (ARK) Time Integrators

Multistage, high-order, conservative IMEX methods

Butcher tableaux representation

0	0 Explicit RK			0	0		D	IRK		
c_2	a_{21}	0				\tilde{c}_2	\tilde{a}_{21}	γ		
•	• •	••••	0		+	• •	• •	•••	γ	
c_s	a_{s1}	•••	$a_{s,s-1}$	0		\tilde{c}_s	\tilde{a}_{s1}	• • •	$\tilde{a}_{s,s-1}$	γ
	b_1	•••	• • •	b_s			$ b_1$	•••	• • •	b_s

Time step: From t_n to $t_{n+1} = t_n + \Delta t$

 $s \rightarrow$ number of stages

Stage solutions

$$\mathbf{y}^{(i)} = \mathbf{y}_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \mathcal{R}_{\text{nonstiff}} \left(\mathbf{y}^{(j)} \right) + \Delta t \sum_{j=1}^{i} \tilde{a}_{ij} \mathcal{R}_{\text{stiff}} \left(\mathbf{y}^{(j)} \right), \ i = 1, \cdots, s$$
$$\mathbf{y}_{n+1} = \mathbf{y}_n + \Delta t \sum_{i=1}^{s} b_i \mathcal{R} \left(\mathbf{y}^{(i)} \right) \quad \text{Step completion}$$
$$Kennedy \& Carpenter, J. Comput. Phys., 2003$$

Implicit Stage Solution

Requires solving nonlinear system of equations

Rearranging the stage solution expression:

$$\underbrace{\frac{1}{\Delta t \tilde{a}_{ii}} \mathbf{y}^{(i)} - \mathcal{R}_{\text{stiff}} \left(\mathbf{y}^{(i)} \right) - \left[\mathbf{y}_n + \Delta t \sum_{j=1}^{i-1} \left\{ a_{ij} \mathcal{R}_{\text{nonstiff}} \left(\mathbf{y}^{(j)} \right) + \tilde{a}_{ij} \mathcal{R}_{\text{stiff}} \left(\mathbf{y}^{(j)} \right) \right\} \right] = 0}_{\mathcal{F} \left(y \right) = 0}$$

Jacobian-free Newton-Krylov method (Knoll & Keyes, J. Comput. Phys., 2004):

Initial guess: $y_0 \equiv \mathbf{y}_0^{(i)} = \mathbf{y}^{(i-1)}$ Newton update: $y_{k+1} = y_k + \mathcal{J}(y_k)^{-1} \mathcal{F}(y_k)$ Action of the Jacobian on a vector approximated by *directional derivative* $\mathcal{J}(y_k) x = \frac{d\mathcal{F}(y)}{dy}\Big|_{y_k} x \approx \frac{1}{\epsilon} \left[\mathcal{F}(y_k + \epsilon x) - \mathcal{F}(y_k)\right]$

Applications

Atmospheric Flows

- Speed of sound much faster than dynamics of interest
- At ANL (with *Emil Constantinescu*)
- o **2013 2015**

Tokamak Edge Plasma Dynamics

- Multiscale dynamics at the edge region
- At LLNL (with *Milo Dorr, Mikhail Dorf, Jeff Hittinger*)
- 2015 Present

Challenges in Atmospheric Flow Simulations

Limited-area and mesoscale simulations require a nonhydrostatic model

Nonhydrostatic model introduces the acoustic mode • Sound waves *much faster than flow velocities*

 Insignificant effect on atmospheric phenomena Multiscale time integration

IMEX time integrators have been **applied to atmospheric flows**

Horizontal-Explicit, Vertical-Implicit Methods

- Simulation domains are much larger horizontally than vertically
- Grids are typically *much finer* along the vertical (z) axis
- Terms with *z*-derivatives integrated implicitly, remaining terms integrated explicitly

Flux-Partitioned Methods

- Right-hand-side partitioned into linear stiff and nonlinear nonstiff components
- Formulation based on perturbations to the hydrostatic balance
- *First-order perturbations treated implicitly*; higher-order perturbations treated explicitly.

Objectives Develop a conservative atmospheric flow solver

Compressible Euler equations (*mass, momentum, energy*)

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ e \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ (e+p)u \end{bmatrix} + \frac{\partial}{\partial y} \begin{bmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ (e+p)v \end{bmatrix} = \begin{bmatrix} 0 \\ \rho \mathbf{g} \cdot \hat{\mathbf{i}} \\ \rho \mathbf{g} \cdot \hat{\mathbf{j}} \\ \rho u\mathbf{g} \cdot \hat{\mathbf{i}} + \rho v\mathbf{g} \cdot \hat{\mathbf{j}} \end{bmatrix}$$

Forms of the governing equations in the literature:

- Expressed in terms of Exner pressure and potential temperature
 - Mass, momentum, energy not conserved
 - Examples: COAMPS US Navy, NMM NCEP, MM5 NCAR/PSU).
- Conservation of mass and momentum; energy equation expressed as conservation of potential temperature (adiabatic assumption)
 - Energy not conserved to machine precision
 - True viscous terms cannot be prescribed if needed
 - Examples: WRF NCAR, NUMA NPS.

Slow-fast flux partitioning exist for these formulations

Derive a characteristic-based flux-partitioning for the Euler equations

Conservative Finite-Difference Schemes

Conservative finite-difference discretization of a 1D hyperbolic conservation law:

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{f}\left(\mathbf{u}\right)}{\partial x} &= 0 \quad \text{if} \quad \frac{\partial \mathbf{u}}{\partial t} + \frac{1}{\Delta x} \left(\mathbf{h}_{j+\frac{1}{2}} - \mathbf{h}_{j-\frac{1}{2}}\right) = 0 \quad \mathbf{f}\left(\mathbf{u}\left(x\right)\right) = \frac{1}{\Delta x} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} \mathbf{h}\left(\mathbf{u}\left(\xi\right)\right) d\xi \\ \frac{\partial \mathbf{u}}{\partial t} + \frac{1}{\Delta x} \left(\hat{\mathbf{f}}_{j+\frac{1}{2}} - \hat{\mathbf{f}}_{j-\frac{1}{2}}\right) = 0 \quad \text{if} \quad \mathbf{h}_{j+\frac{1}{2}} = \mathbf{h}\left(\mathbf{u}\left(x_{j+\frac{1}{2}}\right)\right) + \mathcal{O}\left(\Delta x^{p}\right) \end{aligned}$$
Spatially-discretized ODE in time

5th order WENO (*Jiang & Shu, J. Comput. Phys., 1996*) 5th order CRWENO (*Ghosh & Baeder, SIAM J. Sci. Comput., 2012*)

Characteristic-based Flux Partitioning (1)

Example: Periodic density sine wave on a unit domain discretized by *N*=80 points.

Eigenvalues of the CRWENO5 discretization

Semi-discrete ODE in time

$$\frac{\partial \mathbf{u}}{\partial t} = \hat{\mathbf{F}} \left(\mathbf{u} \right) = \begin{bmatrix} \mathcal{D} \otimes \mathcal{A} \left(u \right) \end{bmatrix} \mathbf{u}$$

Discretization operator (e.g.:WENO5, CRWENO5) Flux Jacobian

$$\operatorname{eig}_{\uparrow} \left[\frac{\partial \hat{\mathbf{F}}}{\partial \mathbf{u}} \right] = \operatorname{eig} \left[\mathcal{D} \right] \times \operatorname{eig} \left[\mathcal{A} \left(\mathbf{u} \right) \right]$$

Time step size limit for linear stability

Eigenvalues of the right-hand-side of the ODE are the **eigenvalues of the discretization operator** times the **characteristic speeds** of the physical system

Lawrence Livermore National Laboratory LLNL-PRES-742278

Characteristic-based Flux Partitioning (2)

Splitting of the **flux Jacobian** based on its eigenvalues

$$\frac{\partial \mathbf{u}}{\partial t} = \hat{\mathbf{F}} (\mathbf{u}) = [\mathcal{D} \otimes \mathcal{A} (u)] \mathbf{u}
= [\mathcal{D} \otimes \mathcal{A}_{S} (u) + \mathcal{D} \otimes \mathcal{A}_{F} (u)] \mathbf{u}
= \hat{\mathbf{F}}_{S} (\mathbf{u}) + \hat{\mathbf{F}}_{F} (\mathbf{u})
\frac{(Slow" flux "Fast" Flux}{\mathbf{f}_{S} (\mathbf{u})} = \begin{bmatrix} \left(\frac{\gamma-1}{\gamma}\right)\rho u \\ \frac{1}{2}\left(\frac{\gamma-1}{\gamma}\right)\rho u^{2} \\ \frac{1}{2}\left(\frac{\gamma-1}{\gamma}\right)\rho u^{3} \end{bmatrix} \text{Convective flux}
(slow)
Acoustic flux (fast) $\mathbf{f}_{F} (\mathbf{u}) = \begin{bmatrix} \left(\frac{1}{\gamma}\right)\rho u \\ (\frac{1}{\gamma}\right)\rho u^{2} + p \\ (e+p)u - \frac{1}{2}\left(\frac{\gamma-1}{\gamma}\right)\rho u^{3} \end{bmatrix} \quad \mathcal{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix}$$$

Characteristic-based Flux Partitioning (3)

Example: Periodic density sine wave on a unit domain discretized by N=80 points (CRWENO5).

$$\frac{\partial \mathbf{F}_{S,F}\left(\mathbf{u}\right)}{\partial \mathbf{u}} \neq \left[\mathcal{A}_{S,F}\right]$$

Small difference between the eigenvalues of the complete operator and the split operator.

(Not an error)

IMEX Time Integration with Characteristic-based Flux Partitioning (1)

Apply Additive Runge-Kutta (ARK) time-integrators to the split form

Stage values
(s stages)
$$\mathbf{U}^{(i)} = \mathbf{u}_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \hat{\mathbf{F}}_S \left(\mathbf{U}^{(j)} \right) + \Delta t \sum_{j=1}^{i} \tilde{a}_{ij} \hat{\mathbf{F}}_F \left(\mathbf{U}^{(j)} \right)$$
 $i = 1, \dots, s$ Step completion $\mathbf{u}_{n+1} = \mathbf{u}_n + \Delta t \sum_{i=1}^{s} b_i \hat{\mathbf{F}}_S \left(\mathbf{U}^{(i)} \right) + \Delta t \sum_{i=1}^{s} \tilde{b}_i \hat{\mathbf{F}}_F \left(\mathbf{U}^{(i)} \right)$ Non-linear system of equations

 $\hat{\mathbf{F}}_{F}(\mathbf{u}) = \left[\mathcal{D}(\omega) \otimes \mathcal{A}_{F}(\mathbf{u})\right] \mathbf{u}$ Solution-dependent weights for the WENO5/CRWENO5 scheme $\omega = \omega \left[\mathbf{F}(\mathbf{u})\right]$ Nonlinear flux

Linearization of Flux Partitioning

Redefine the splitting as

$$\begin{aligned} \mathbf{F}_{F}\left(\mathbf{u}\right) &= \left[\mathcal{A}_{F}\left(\mathbf{u}_{n}\right)\right]\mathbf{u}\\ \mathbf{F}_{S}\left(\mathbf{u}\right) &= \mathbf{F}\left(\mathbf{u}\right) - \mathbf{F}_{F}\left(\mathbf{u}\right) \end{aligned}$$

Note: Introduces **no error** in the governing equation.

At the beginning of a time step:-
eig
$$\left[\frac{\partial \hat{\mathbf{F}}_S}{\partial \mathbf{u}}\right] = u \times \text{eig}\left[\mathcal{D}\right]$$

eig $\left[\frac{\partial \hat{\mathbf{F}}_F}{\partial \mathbf{u}}\right] = \{u \pm a\} \times \text{eig}\left[\mathcal{D}\right]$

Is F_F a good approximation at each stage?

Linearization of the WENO/CRWENO discretization:

Within a stage, the nonlinear weights are kept fixed. **Example**: 2-stage ARK

method

IMEX Time Integration with Characteristic-based Flux Partitioning (2)

Linear system of equations for implicit stages:

$$\left[\mathcal{I} - \Delta t \tilde{a}_{ii} \mathcal{D} \otimes \mathcal{A}_F\left(\mathbf{u_n}\right)\right] \mathbf{U}^{(i)} = \mathbf{u}_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \hat{\mathbf{F}}_S\left(\mathbf{U}^{(j)}\right) + \Delta t \left[\mathcal{D} \otimes \mathcal{A}_F\left(\mathbf{u_n}\right)\right] \sum_{j=1}^{i-1} \tilde{a}_{ij} \mathbf{U}^{(j)},$$

 $i=1,\cdots,s$

Preconditioning (Preliminary attempts)

$$\mathcal{P} = \left[\mathcal{I} - \Delta t \tilde{a}_{ii} \mathcal{D}^{(1)} \otimes \mathcal{A}_F \left(\mathbf{u_n} \right) \right] \approx \left[\mathcal{I} - \Delta t \tilde{a}_{ii} \mathcal{D} \otimes \mathcal{A}_F \left(\mathbf{u_n} \right) \right]$$

First order upwind discretization Periodic boundaries ignored

- Block n-diagonal matrices
- Block tri-diagonal (1D)
- Block penta-diagonal (2D)
- Block septa-diagonal (3D)
- Jacobian-free approach → Linear Jacobian defined as a function describing its action on a vector
- **Preconditioning matrix** \rightarrow Stored as a sparse matrix

ARKIMEX 2c

ARK Methods (PETSc)

- 2nd order accurate
- 3 stage (1 explicit, 2 implicit)
- L-Stable implicit part
- Large real stability of explicit part

ARKIMEX 2e

- 2nd order accurate
- 3 stage (1 explicit, 2 implicit)
- L-Stable implicit part

ARKIMEX 3

- 3rd order accurate
- 4 stage (1 explicit, 3 implicit)
- L-Stable implicit part

ARKIMEX 4

- 4th order accurate
- 5 stage (1 explicit, 4 implicit)
- L-Stable implicit part

Example: 1D Density Wave Advection (M $_{\infty}$ = 0.1)

Example: 1D Density Wave Advection (M_{\infty} = 0.1) Computational Cost

Number of function calls

Wall time

Number of function calls = (Number of time steps × number of stages) + Number of GMRES iterations (does not reflect cost of constructing preconditioning matrix and inverting it)

Example: 1D Density Wave Advection (M $_{\infty}$ = 0.01)

Example: 1D Density Wave Advection (M_{\infty} = 0.01) Computational Cost

Number of function calls = (Number of time steps × number of stages) + Number of GMRES iterations (does not reflect cost of constructing preconditioning matrix and inverting it)

Example: 2D Low Mach Isentropic Vortex Convection

Freestream flow

$$\left. \begin{array}{c} \rho_{\infty} = 1 \\ p_{\infty} = 1 \\ u_{\infty} = 0.1 \\ v_{\infty} = 0 \end{array} \right\} M_{\infty} \approx 0.08$$

$$\rho = \left[1.0 - \frac{(\gamma - 1)b^2}{8\gamma\pi^2} \exp\left(1 - r^2\right)\right]^{\frac{1}{\gamma^2}}$$
$$p = \left[1.0 - \frac{(\gamma - 1)b^2}{8\gamma\pi^2} \exp\left(1 - r^2\right)\right]^{\frac{\gamma}{\gamma^2}}$$
$$u = u_{\infty} - \frac{b}{2\pi} \exp\left(\frac{1 - r^2}{2}\right)(y - y_c)$$
$$v = v_{\infty} + \frac{b}{2\pi} \exp\left(\frac{1 - r^2}{2}\right)(x - x_c)$$

Eigenvalues of the right-hand-side operators

Example: 2D Low Mach Isentropic Vortex Convection

• Time step size limited by the "slow" eigenvalues.

Example: Vortex Convection (Computational Cost)

Lawrence Livermore National Laboratory LLNL-PRES-742278

Example: Inertia – Gravity Wave

- Periodic channel 300 km x 10 km
- No-flux boundary conditions at top and bottom boundaries
- Mean horizontal velocity of 20 m/s in a uniformly stratified atmosphere (M_∞≈ 0.06)
- Initial solution Potential temperature perturbation

Potential temperature perturbations at 3000 seconds (Solution obtained with **WENO5** and **ARKIMEX 2e**, 1200x50 grid points)

Eigenvalues of the right-hand-side operators

Example: Inertia – Gravity Wave

CFL	Wa	II time	Function counts		
	Absolute (s)	Normalized (/RK4)	Absolute	Normalized (/RK4)	
8.5	6,149	1.14	24,800	1.03	
13.6	4,118	0.76	17,457	0.73	
17.0	3,492	0.65	14,820	0.62	
20.4	2,934	0.54	12,895	0.54	

Fastest RK4

CFL ~ **1.0,** Wall time: **5400 s** Function counts: **24000**

Cross-sectional potential temperature perturbations at 3000 seconds (y = 5 km) at CFL numbers 0.2 – 13.6

Lawrence Livermore National Laboratory LLNL-PRES-742278

Example: Rising Thermal Bubble

CFL	Wa	ll time	Function counts		
	Absolute (s) Normalized (/RK4)		Absolute	Normalized (/RK4)	
6.9	73,111	2.42	360,016	2.25	
34.7	22,104	0.73	111,824	0.70	
138.9	8,569	0.28	45,969	0.29	

Fastest RK4

CFL ~ **0.7**, Wall time: **30,154** s Function counts: **160,000**

Summary (Atmospheric Flows)

Characteristic-based flux splitting:

- Partitioning of flux separates the acoustic and entropy modes → Allows larger time step sizes (determined by flow velocity, not speed of sound).
- **Comparison** to alternatives
 - Vs. explicit time integration: Larger time steps → More efficient algorithm
 - Vs. implicit time integration: Semi-implicit solves a linear system without any approximations to the overall governing equations (as opposed to: solve nonlinear system of equations or linearize governing equations in a time step).

Future work:

- Improve efficiency of the linear solve
 - Better preconditioning of the linear system
- Extend to 3D flow problems

Tokamak-Edge Plasma Dynamics

Inner edge: Adjacent to the core

- High temperature and density; Mean free paths comparable to density/temperature gradients
- Weakly collisional

Requires kinetic simulation with collision model

Outer edge: Near tokamak wall

- Low temperature and density; Short mean free paths compared to density and temperature gradients
- Strongly collisional

Introduces very small time scales

Governing Equations

Full-f gyrokinetic Vlasov equation for each ion species

4D (2D-2V) phase space

 $\mathbf{R} \equiv \{r, \theta\}$ $v_{\parallel}, \ \mu = \frac{1}{2} \frac{m_{\alpha} v_{\perp}^2}{B}$

Electric field **E** can be specified or computed from f_{α} using the Poisson equation for electrostatic potential

We consider *single-species cases* in this study.

Fokker-Planck Collision Model

Fokker-Planck-Rosenbluth equation

$$c\left[f_{\alpha}, f_{\beta}\right] = \lambda_{c} \left(\frac{4\pi Z_{\alpha} Z_{\beta} e^{2}}{m_{\alpha}}\right)^{2} \nabla_{\left(v_{\parallel}, \mu\right)} \cdot \left[\vec{\gamma}_{\beta} f_{\alpha} + \overleftarrow{\tau}_{\beta} \nabla_{\left(v_{\parallel}, \mu\right)} f_{\alpha}\right]$$

where the advective and diffusive coefficients are given by

$$\vec{\gamma}_{\beta} = \begin{bmatrix} \frac{\partial\varphi_{\beta}}{\partial v_{\parallel}} & 2\mu\frac{m_{\beta}}{B}\frac{\partial\varphi_{\beta}}{\partial\mu} \end{bmatrix}, \quad \overleftarrow{\tau}_{\beta} = \begin{bmatrix} -\frac{\partial^{2}\varrho_{\beta}}{\partial v_{\parallel}^{2}} & -2\mu\frac{m_{\beta}}{B}\frac{\partial^{2}\varrho_{\beta}}{\partial v_{\parallel}\mu} \\ -2\mu\frac{m_{\beta}}{B}\frac{\partial^{2}\varrho_{\beta}}{\partial v_{\parallel}\mu} & -2\mu\left(\frac{m_{\beta}}{B}\right)^{2}\left\{2\mu\frac{\partial^{2}\varrho_{\beta}}{\partial\mu^{2}} + \frac{\partial\varrho_{\beta}}{\partial\mu}\right\} \end{bmatrix}$$

Rosenbluth potentials are related to f_{β} by the Poisson equations

$$\begin{aligned} \frac{\partial^2 \varphi_{\beta}}{\partial v_{\parallel}^2} + \frac{m_{\beta}}{B} \frac{\partial}{\partial \mu} \left(2\mu \frac{\partial \varphi_{\beta}}{\partial \mu} \right) &= f_{\beta} \\ \frac{\partial^2 \varrho_{\beta}}{\partial v_{\parallel}^2} + \frac{m_{\beta}}{B} \frac{\partial}{\partial \mu} \left(2\mu \frac{\partial \varrho_{\beta}}{\partial \mu} \right) &= \varphi_{\beta} \end{aligned}$$

Non-linear, integro-differential term Each evaluation of the Fokker-Planck term requires Poisson solve in the velocity space

COGENT: Continuum Gyrokinetic Edge New Technology

- Governing equations: 4D (2D 2V) Eulerian gyrokinetic Vlasov-Poisson system with imposed magnetic field with collision models
- Domain: Tokamak edge region (from core across the separatrix to the scrape-off layer)
- Discretization: 4th order finite-volume method over mapped, multiblock grids
- Collaborative effort between Center for Applied Scientific Computing at LLNL and Applied Numerical Algorithms Group (ANAG) at LBL
- Based on CHOMBO (Finite-volume AMR package developed at LBL)
- Open-source, released under BSD license: <u>https://github.com/LLNL/COGENT</u>

Current areas of research

- o IMEX methods (this paper)
- Electron models
- Extension to 5D (3D 2V)

Spatial Discretization (1)

Finite-volume discretization on mapped grids

Integral form of the governing
$$\frac{\partial}{\partial t} \left(\int_{\mathbf{X}(\omega_{i})} f d\mathbf{x} \right) = \int_{\partial \mathbf{X}(\omega_{i})} \mathbf{V} f d\mathbf{x} + \int_{\partial \mathbf{X}(\omega_{i})} \mathbf{C} f d\mathbf{x}$$
 equations

Both the Vlasov and the collision terms can be written in divergence form

Spatially-discretized ODE in time

Cell-averaged solution

Face-averaged Vlasov fluxes

Face-averaged collision fluxes

Spatial Discretization (2)

Face-averaged values are computed from *face-centered values* to 4th order using corrections

$$\langle u \rangle_{\mathbf{i} \pm \frac{1}{2} \mathbf{e}_{d}} = u_{\mathbf{i} \pm \frac{1}{2} \mathbf{e}_{d}} + \frac{h^{2}}{24} \sum_{\substack{d'=1\\d' \neq d}}^{4} \frac{\partial^{2} u}{\partial \xi_{d'}^{2}} \Big|_{\mathbf{i} \pm \frac{1}{2} \mathbf{e}_{d}} + \mathcal{O}\left(h^{4}\right)$$

$$\mathbf{v}_{\mathbf{i}} = u_{\mathbf{i}} + \frac{h^{2}}{24} \sum_{d=1}^{4} \left. \frac{\partial^{2} u}{\partial \xi_{d}^{2}} \right|_{\mathbf{i}} + \mathcal{O}\left(h^{4}\right)$$

$$\mathbf{v}_{\mathbf{i}} = u_{\mathbf{i}} + \frac{h^{2}}{24} \sum_{d=1}^{4} \left. \frac{\partial^{2} u}{\partial \xi_{d}^{2}} \right|_{\mathbf{i}} + \mathcal{O}\left(h^{4}\right)$$

Cell-averaged values are computed from *cell-centered values* to 4th order using corrections

And vice-versa...

Spatial Discretization (3): Vlasov Flux

Face-averaged Vlasov flux

The Vlasov flux vector is an $V^{(s)}(f) = a^{(s)}f;$ advective term

$$\left\langle \hat{V} \right\rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}_{d}} = \left\langle \hat{\mathbf{V}} \right\rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}_{d}} \cdot \mathbf{e}_{d} \qquad \mathbf{V}(f) \equiv \begin{bmatrix} V^{(1)}(f) \\ \vdots \\ V^{(4)}(f) \end{bmatrix} \qquad a^{(s)} = \begin{cases} \left\langle \mathbf{n} \cdot \hat{\theta} \right\rangle, & s = 1 \\ \left\langle \mathbf{n} \cdot \hat{\theta} \right\rangle, & s = 1 \\ \dot{v}_{\parallel}, & s = 3, \\ 0, & s = 4 \end{cases}$$

The **face-averaged Vlasov flux** is computed as a 4th order accurate convolution:

$$\left\langle \hat{V}^{(s)} \right\rangle_{\mathbf{i} + \frac{1}{2}\mathbf{e}_{d}} = \left\langle a^{(s)} \right\rangle_{\mathbf{i} + \frac{1}{2}\mathbf{e}_{d}} \left\langle \bar{f} \right\rangle_{\mathbf{i} + \frac{1}{2}\mathbf{e}_{d}} + \frac{h^{2}}{12} \sum_{\substack{d'=1\\d' \neq d}}^{4} \left(\frac{\partial a^{(s)}}{\partial \xi_{d'}} \frac{\partial \bar{f}}{\partial \xi_{d'}} \right) + \mathcal{O}\left(h^{4}\right),$$

$$\bar{f} = \frac{1}{\bar{\omega}_{\mathbf{i}}} \int_{\bar{\omega}_{\mathbf{i}}} f d\boldsymbol{\xi} = J_{\mathbf{i}}^{-1} \left[\bar{f}_{\mathbf{i}} - \frac{h^{2}}{12} \nabla_{\boldsymbol{\xi}} \bar{f} \cdot \nabla_{\boldsymbol{\xi}} J \right] \underbrace{ \underbrace{ + \mathcal{O}\left(h^{4}\right) }}_{\mathbf{i} \neq d}$$
Computed using 2nd order central differences since multiplied by h^{2}

 $\left\langle \bar{f} \right\rangle_{\mathbf{i}+\frac{1}{2}\mathbf{e}_d}$ Computed from cell-averaged values using the 5th order WENO scheme

 $\left(\left(\dot{\mathbf{R}} \cdot \hat{r} \right) \quad s = 1 \right)$

Spatial Discretization (4): Collision Term

Face-centered
collision flux
$$C_{i+\frac{1}{2}e_{d}}^{(d)} = \begin{cases} \Gamma_{i+\frac{1}{2}e_{3}}^{v_{\parallel}}, & d = 3 \\ \Gamma_{i+\frac{1}{2}e_{4}}^{\mu}, & d = 4 \\ 0, & \text{otherwise} \end{cases}$$
The collision term acts only on
the velocity space and the
velocity grid is CartesianCollision flux along v_{\parallel} $\Gamma_{i+\frac{1}{2}e_{3}}^{v_{\parallel}} \equiv \Gamma_{k+\frac{1}{2},l}^{v_{\parallel}} = \begin{bmatrix} \gamma_{v_{\parallel}}f + \tau_{v_{\parallel}v_{\parallel}} \frac{\partial f}{\partial v_{\parallel}} + \tau_{v_{\parallel}\mu} \frac{\partial f}{\partial \mu} \end{bmatrix}_{k+\frac{1}{2},l}$ Sth order upwind based
on the sign of coefficientImage: constraint of the sign of coefficient

- The Poisson equations for the Rosenbluth potentials are solved using a 2nd order method (see *Dorf et. al, Contrib. Plasma Phys., 2014*)
- Advection-diffusion coefficients computed from the Rosenbluth potentials using 2nd order central finite differences.

Temporal Scales at Tokamak Edge

Preconditioning

- Use lower order finite differences to construct the preconditioning matrix
- More sparse than the actual Jacobian
- o Assembled and stored as a sparse matrix

5th order upwind for advective terms
 4th order central for diffusion terms

1st order upwind for advective terms
 2nd order central for diffusion terms

Results in a 9-banded matrix

Eigenvalues of the Jacobian of the actual collisions term and the approximation for preconditioning

The preconditioner is inverted using the *Gauss-Seidel method* (computationally inexpensive)

Test Problems

Ion parallel heat transport on Cartesian domains

- **Case 1:** 1D dynamics of a strongly collisional plasma
- **Case 2:** 2D dynamics with varying collisionality; representative of a radial patch at the tokamak edge

Specified electrostatic potential

Test Problem 1: 1D Ion Parallel Heat Transport

A 2D slab (in configuration space), representative of cold edge

Transport time scale

- Temperature equilibrates to constant value
- Density assumes cosine shape to balance electrostatic potential

Collisional time scale

 Heat flux attains values consistent with temperature gradient

ARK4 vs. RK4 and Effect of Preconditioner

Computational cost of ARK4 with and without preconditioner (first 4 rows) and RK4 (last row) Preconditioner for ARK4: *Gauss-Seidel solver with 80 iterations*

Vlasov CFL	Collision CFL	* Number of Function Calls			Wall time (seconds)		
		No PC	With PC	Ratio	No PC	With PC	Ratio
0.2	2.4	388,408	397,023	1.02	1.4 × 10 ⁵	1.5 × 10 ⁵	1.07
0.6	6.1	156,935	142,297	0.91	5.7 × 10 ⁴	5.3 × 10 ⁴	0.93
0.9	9.7	103,801	75,249	0.72	3.7 × 10 ⁴	2.7 × 10 ⁴	0.73
1.1	12.1	89,544	61,298	0.68	$3.3 imes 10^4$	2.3 × 10 ⁴	0.70
0.04	0.5	260,000			1.1 × 10 ⁵		

* Number of function calls = Calls from time integrator (time steps × stages) + number of Newton iterations + number of GMRES iterations

- Grid size: 6 (x) × 64 (y) × 36 (v_{\parallel}) × 24 (μ), solved on 192 cores (2.6 GHz Intel Xeon)
- Preconditioner results in some speed-up at higher CFL numbers
- o Overhead of assembling and inverting the preconditioning matrix is relatively small

Test Problem 2: 2D Ion Parallel Heat Transport

A 2D slab (in configuration space), representative of the varying collisionality in the edge region

Test Problem 2: 2D Ion Parallel Heat Transport

Method	Vlasov CFL	Collision CFL	Number of Function Calls		Number of Function Calls Wall time (se		(seconds)
			No PC	With PC	No PC	With PC	
ARK4	1.1	25.8	52,551	30,852	2.5 ×10 ⁴	1.6 ×10 ⁴	
RK4	0.02	0.52	260,000		1.7	×10 ⁵	

Summary and Future Work

• IMEX approach for strongly-collisional tokamak edge plasma

- ✓ Collisions integrated in time implicitly while Vlasov term integrated in time explicitly
- ✓ Wall time for fastest stable solution significantly reduced
- ✓ Low order preconditioning results in lower computational cost at high collision CFL numbers

• Future work

- More efficient solver for inverting the preconditioning matrix (Gauss-Seidel needs 80 iterations!)
- Implement IMEX for other fast scales (*electrostatic Alfven waves, parallel electron transport, ion acoustic modes, parallel ion transport*)

Thank you. Questions?

