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Time	Scales	and	Numerical	Time	Integration
Motivation	for	Implicit-Explicit	(IMEX)	Approach

Complex	physics	are	characterized	by	a	large	range	of	temporal	scales

Explicit	time-integration constrained	by	
fastest	time	scale	in	the	model
o Inefficient	when	resolving	slow	dynamics
o Split-Explicit	methods (atmospheric	flow	

simulations)

Implicit	time-integration requires	
solution	to	nonlinear	system	of	equations
o Unconditional	stability
o Why	pay	for	inverting	terms	we	want	to	

resolve?

Which	time	scales	do	we	want	to	resolve?	(Usually,	some	of	them)

Model	ODE	
in	time
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λ3
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λn
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λ1

Slow Fastλ2

λ3

…

λn

Explicit	time	
integration

Faster	time	
scales
(stiff	terms)

Time	scales	of	
interest
(nonstiff	terms)

Implicit	time	
integration

Implicit-Explicit	(IMEX)	Time	Integration
Resolve	scales	of	interest;	Treat	implicitly	faster	scales

ODE	in	time
Resulting	from	spatial	discretization	of	PDE

IMEX time	integration:	partition	RHS

Time	step	constrained by	eigenvalues	(time	scales)	of	nonstiff	component	of	RHS

Linear	stability	constraint	
on	time	step
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Additive	Runge-Kutta	(ARK)	Time	Integrators
Multistage,	high-order,	conservative	IMEX	methods

Explicit	RK DIRK

s à number	of	stages

Stage	solutions

Step	completion

Time	step: From		tn to tn+1 = tn + Δt

+

Butcher tableaux representation

Kennedy	&	Carpenter,	
J.	Comput.	Phys.,	2003
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Implicit	Stage	Solution
Requires	solving	nonlinear	system	of	equations

Rearranging	the	stage	solution	expression:

Jacobian-free	Newton-Krylovmethod	(Knoll	&	Keyes,	J.	Comput.	Phys.,	2004):

Newton	update:

GMRES	solver
(preconditioned)

Action	of	the	Jacobian	on	a	vector	
approximated	by	directional	derivative

Initial	guess:
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Applications

Atmospheric	Flows
o Speed	of	sound	much	faster	than	dynamics	of	interest
o At	ANL	(with	Emil	Constantinescu)
o 2013	– 2015

Tokamak	Edge	Plasma	Dynamics
o Multiscale	dynamics	at	the	edge	region
o At	LLNL	(with	Milo	Dorr,	Mikhail	Dorf,	Jeff	Hittinger)
o 2015	– Present
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Challenges	in	Atmospheric	Flow	Simulations

o Sound	waves	much	faster	than	
flow	velocities

o Insignificant	effect on	
atmospheric	phenomena

Nonhydrostatic	model	
introduces	the	
acoustic	mode

Multiscale	time	
integration

Limited-area	and	mesoscale simulations	require	a	nonhydrostatic	model

Horizontal-Explicit,	Vertical-Implicit	Methods
o Simulation	domains	are	much	larger	

horizontally	than	vertically
o Grids	are	typically	much	finer along	the	vertical	

(z)	axis
o Terms	with	z-derivatives	integrated	implicitly,	

remaining	terms	integrated	explicitly

IMEX	time	integrators have	been	applied	to	atmospheric	flows

Flux-Partitioned	Methods
o Right-hand-side	partitioned	into	linear	stiff	and	

nonlinear	nonstiff	components
o Formulation	based	on	perturbations	to	the	

hydrostatic	balance
o First-order	perturbations	treated	implicitly;	

higher-order	perturbations	treated	explicitly.
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Objectives
Develop	a	conservative	atmospheric	flow	solver

8
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Compressible	Euler	
equations (mass,	
momentum,	energy)

Forms of the governing equations in the literature:
o Expressed in terms of Exner pressure and potential temperature

o Mass, momentum, energy not conserved
o Examples: COAMPS – US Navy, NMM – NCEP, MM5 – NCAR/PSU).

o Conservation of mass and momentum; energy equation expressed as
conservation of potential temperature (adiabatic assumption)
o Energy not conserved to machine precision
o True viscous terms cannot be prescribed if needed
o Examples: WRF – NCAR, NUMA – NPS.

Slow-fast	flux	
partitioning	
exist	for	these	
formulations

Derive	a	characteristic-based	flux-partitioning	for	the	Euler	equations
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Conservative	Finite-Difference	Schemes

Conservative	finite-difference	discretization		of	a	1D	hyperbolic	conservation	law:

9

j j+10 Nj-1
j-1/2 j+1/2

Cell	centersCell	interfaces

Δx

Spatially-discretized	ODE	in	time

5th order WENO
(Jiang & Shu, J. Comput. Phys., 1996)

5th order CRWENO
(Ghosh & Baeder, SIAM J. Sci. Comput., 2012)
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Characteristic-based	Flux	Partitioning	(1)

1
0

1D Euler equations Semi-discrete ODE in timeSpatial	
discretization

Discretization	operator	
(e.g.:WENO5,	CRWENO5)

Flux	Jacobian
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Eigenvalues	of	the	CRWENO5	
discretization

Eigenvalues	of	the	right-
hand-side	operator	
(u=0.1,	a=1.0,	dx=0.0125)

Example: Periodic density sine wave on a
unit domain discretized by N=80 points.

Time step size limit for
linear stability

Eigenvalues	of	the	right-hand-side of	
the	ODE	are	the	eigenvalues	of	the	
discretization	operator times	the	
characteristic	speeds of	the	physical	
system
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Splitting of the flux Jacobian based on its eigenvalues

“Slow”	flux “Fast”	Flux

⇤F =

2

4
0

u+ a
u� a

3

5

Characteristic-based	Flux	Partitioning	(2)

Acoustic	
flux	(fast)

Convective	flux	
(slow)



LLNL-PRES-742278
121

2

-200

-150

-100

-50

 0

 50

 100

 150

 200

-250 -200 -150 -100 -50  0  50

I
m
a
g
i
n
a
r
y

Real

F(u) FF(u) FS(u)

Example: Periodic	density	sine	wave	on	a	
unit	domain	discretized	by	N=80	points	
(CRWENO5).

Small	difference	between	the	eigenvalues	of	
the	complete	operator	and	the	split	operator.
(Not	an	error)

Characteristic-based	Flux	Partitioning	(3)
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IMEX	Time	Integration	with	Characteristic-based	
Flux	Partitioning	(1)

1
3

Apply Additive Runge-Kutta (ARK) time-integrators to the split form

Stage values
(s stages)

Step completion

Non-linear system of equations

Solution-dependent weights for
the WENO5/CRWENO5 scheme

Nonlinear flux



LLNL-PRES-742278
141

4

Redefine the splitting as

Note:	Introduces	no	error in	
the	governing	equation. -200
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At the beginning of a time step:-

Is	FF a	good	approximation	at	each	stage?

Linearization	of		Flux	Partitioning

Linearization of the WENO/CRWENO discretization:

Within	a	stage,	the	non-
linear	weights	are	kept	
fixed.
Example:	2-stage	ARK	
method
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Linear system of equations for implicit stages:

ARKIMEX 2c
• 2nd order accurate
• 3 stage (1 explicit, 2 implicit)
• L-Stable implicit part
• Large real stability of explicit part

ARKIMEX 2e
• 2nd order accurate
• 3 stage (1 explicit, 2 implicit)
• L-Stable implicit part

ARKIMEX 3
• 3rd order accurate
• 4 stage (1 explicit, 3 implicit)
• L-Stable implicit part

ARKIMEX 4
• 4th order accurate
• 5 stage (1 explicit, 4 implicit)
• L-Stable implicit part

ARK Methods (PETSc)

Preconditioning (Preliminary attempts)

First	order	upwind	discretization
Periodic	boundaries	ignored

o Jacobian-free approach à Linear Jacobian defined
as a function describing its action on a vector

o Preconditioning matrixà Stored as a sparse matrix

Block n-diagonal matrices
• Block tri-diagonal (1D)
• Block penta-diagonal (2D)
• Block septa-diagonal (3D)

IMEX	Time	Integration	with	Characteristic-based	
Flux	Partitioning	(2)
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Example:	1D	Density	Wave	Advection	(M∞ =	0.1)

1
6

Initial solution

CRWENO5, 320 grid points
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≈10x
Explicit	limit

Semi-implicit	limit

Semi-implicit	time	step	size	limit 1/	M∞ than	explicit	time	step	size	limit

Eigenvalues
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Explicit	

Implicit	

⇢ = ⇢1 + ⇢̂ sin (2⇡x) , u = u1, p = p1; 0  x  1
⇢ = ⇢1 + ⇢̂ sin (2⇡x) , u = u1, p = p1; 0  x  1⇢ = ⇢1 + ⇢̂ sin (2⇡x) , u = u1, p = p1; 0  x  1
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Number of function calls Wall time
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ARK2c - Block Jacobi

ARK2c - ILU(0)
RK2a

≈	4x

Example:	1D	Density	Wave	Advection	(M∞ =	0.1)
Computational	Cost

Number	of	function	calls =	(Number	of	time	steps	× number	of	stages)	+	Number	of	GMRES	iterations
(does	not	reflect	cost	of	constructing	preconditioning	matrix	and	inverting	it)
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arkimex(3  )
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≈100x

Explicit	limit

Semi-implicit	
limit

Eigenvalues Initial solution ⇢ = ⇢1 + ⇢̂ sin (2⇡x) , u = u1, p = p1; 0  x  1
⇢ = ⇢1 + ⇢̂ sin (2⇡x) , u = u1, p = p1; 0  x  1⇢ = ⇢1 + ⇢̂ sin (2⇡x) , u = u1, p = p1; 0  x  1

CRWENO5, 320 grid points

Semi-implicit	time	step	size	limit 1/	M∞ than	explicit	time	step	size	limit

Example:	1D	Density	Wave	Advection	(M∞ =	0.01)
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Example:	1D	Density	Wave	Advection	(M∞ =	0.01)
Computational	Cost

Number of function calls Wall time

Number	of	function	calls =	(Number	of	time	steps	× number	of	stages)	+	Number	of	GMRES	iterations
(does	not	reflect	cost	of	constructing	preconditioning	matrix	and	inverting	it)
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Example:	2D	Low	Mach	Isentropic	Vortex	Convection

2
0

Freestream flow

Vortex (Strength b = 0.5)

Eigenvalues of the right-hand-side operators
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Grid:	322 points,	
CRWENO5
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o Optimal orders of convergence observed for all methods
o Time step size limited by the “slow” eigenvalues.

Example:	2D	Low	Mach	Isentropic	Vortex	Convection
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Example:	Vortex	Convection	(Computational	Cost)

2
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Example:	Inertia	– Gravity	Wave

2
3

o Periodic	channel – 300	km	x	10	km
o No-flux	boundary	conditions at	top	and	

bottom	boundaries
o Mean	horizontal	velocity of	20	m/s	in	a	

uniformly	stratified	atmosphere	(M∞≈		0.06)
o Initial	solution	– Potential	temperature	

perturbation

x

y

 

 

0 0.5 1 1.5 2 2.5 3
x 105

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5x 10−3

Potential temperature perturbations at 3000 seconds (Solution
obtained withWENO5 and ARKIMEX 2e, 1200x50 grid points)

Eigenvalues of the right-hand-side operators
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CRWENO5
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Example:	Inertia	– Gravity	Wave

2
4

Cross-sectional	potential	
temperature	perturbations	at	
3000	seconds	(y	=	5	km)	at	CFL	
numbers	0.2	– 13.6

Fastest	RK4
CFL	~	1.0,	Wall	time:	5400	s
Function	counts:	24000

CFL Wall time Function counts
Absolute (s) Normalized (/RK4) Absolute Normalized (/RK4)

8.5 6,149 1.14 24,800 1.03
13.6 4,118 0.76 17,457 0.73
17.0 3,492 0.65 14,820 0.62
20.4 2,934 0.54 12,895 0.54
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Example:	Rising	Thermal	Bubble

2
5

Fastest	RK4
CFL	~	0.7,	Wall	time:	30,154	s
Function	counts:	160,000

CFL Wall time Function counts

Absolute (s) Normalized 
(/RK4) Absolute Normalized 

(/RK4)
6.9 73,111	 2.42 360,016 2.25

34.7 22,104 0.73 111,824 0.70

138.9 8,569 0.28 45,969 0.29
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Summary	(Atmospheric	Flows)

2
6

Characteristic-based flux splitting:
o Partitioning of flux separates the acoustic and entropy modes à Allows larger

time step sizes (determined by flow velocity, not speed of sound).

o Comparison to alternatives

• Vs. explicit time integration: Larger time stepsàMore efficient algorithm

• Vs. implicit time integration: Semi-implicit solves a linear system without any
approximations to the overall governing equations (as opposed to: solve non-
linear system of equations or linearize governing equations in a time step).

Future work:
o Improve efficiency of the linear solve

• Better preconditioning of the linear system

o Extend to 3D flow problems
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Tokamak-Edge	Plasma	Dynamics

Plasma	dynamics	in	the	edge	region	is	characterized	by	a	large	range	of	temporal	scales

Inner	edge: Adjacent	to	the	core
o High	temperature	and	density;	Mean	free	paths	

comparable	to	density/temperature	gradients
o Weakly	collisional

Requires	kinetic	simulation	with	collision	model

Outer	edge: Near	tokamak	wall
o Low	temperature	and	density;	Short	mean	free	paths	

compared	to	density	and	temperature	gradients
o Strongly	collisional

Introduces	very	small	time	scales
Image	source:www.iter.org

ITER	tokamak

Parallel	Ion	Transport

Plasma	FrequencyParallel	Electron	Transport

Electrostatic	Sound	Wave

Ion-Ion	Collisions

Slow Fast
Electrostatic	Alfven	Waves				
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Governing	Equations

Full-f	gyrokinetic	Vlasov	equation	for	each	ion	species

4D	(2D-2V)	phase	space

r

θ
Electric	field	E can	be	specified	or	computed	from	fα
using	the	Poisson	equation	for	electrostatic	potential

We	consider	single-species	cases in	this	study.

Vlasov Collisions

where Velocity

Acceleration
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Fokker-Planck	Collision	Model

Fokker-Planck-Rosenbluth	equation

where	the	advective	and	diffusive	coefficients	are	given	by	

Rosenbluth	potentials are	related	to	fβ
by	the	Poisson	equations

Non-linear,	integro-differential	term

Each	evaluation	of	the	Fokker-Planck	
term	requires	Poisson	solve	in	the	
velocity	space
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COGENT:	Continuum	Gyrokinetic	Edge	New	
Technology

o Governing	equations:	4D	(2D	2V)	Eulerian	gyrokinetic	Vlasov-Poisson		
system	with	imposed	magnetic	field	with	collision	models

o Domain:	Tokamak	edge	region	(from	core	across	the	separatrix	to	the	
scrape-off	layer)

o Discretization:	4th order	finite-volume	method	over	mapped,	multi-
block	grids

o Collaborative	effort	between	Center	for	Applied	Scientific	Computing	
at	LLNL	and	Applied	Numerical	Algorithms	Group	(ANAG)	at	LBL

o Based	on	CHOMBO (Finite-volume	AMR	package	developed	at	LBL)
o Open-source,	released	under	BSD	license:	

https://github.com/LLNL/COGENT

Left  
scrape-off 

Right 
scrape-off 

Left 
central 
scrape-off 

Right 
central 
scrape-off 

Left  
core 

Right  
core 

Left 
private 
flux 

Right 
private 
flux 

Middle  
core 

Middle 
central 
scrape-off 

Current	areas	
of	research

o IMEX	methods	(this	paper)
o Electron	models
o Extension	to	5D	(3D	2V)
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Spatial	Discretization	(1)

Finite-volume	discretization	on	mapped	grids

Hypercube	of	unit	length

discretized	into	computational	cells

Computational	domain

i-th cell	center

i:	4-dimensional	integer	index	(i, j, k, l)
h:	grid	spacing

Integral	form of	
the	governing	
equations

Both	the	Vlasov	and	the	collision	terms	can	be	written	in	divergence	form

Spatially-discretized	ODE	in	time

Cell-averaged	
solution

Face-averaged	
Vlasov	fluxes

Face-averaged	
collision	fluxes
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Spatial	Discretization	(2)

Cell-averaged	values are	computed	from	cell-centered	values to	4th order	using	corrections

Face-averaged	values are	computed	from	face-centered	values to	4th order	using	corrections

Computed	using	2nd order	central	
differences	since	multiplied	by	h2

And	vice-versa…
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Spatial	Discretization	(3):	Vlasov	Flux

The	Vlasov	flux	vector	is	an	
advective	termFace-averaged	Vlasov	flux

The	face-averaged	Vlasov	flux	is	computed	as	a	4th order	accurate	convolution:

Computed	using	2nd order	central	
differences	since	multiplied	by	h2

Computed	from	cell-averaged	values	using	the	5th order	WENO	scheme	
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Spatial	Discretization	(4):	Collision	Term

Collision	flux	along	v||

5th order	upwind	based	
on	the	sign	of	coefficient 4th order	central

o The	Poisson	equations	for	the	Rosenbluth	potentials	are	solved	using	a	2nd order	method	(see	
Dorf	et.	al,	Contrib.	Plasma	Phys.,	2014)

o Advection-diffusion	coefficients	computed	from	the	Rosenbluth	potentials	using	2nd order	
central	finite	differences.

The	collision	term	acts	only	on	
the	velocity	space	and	the	
velocity	grid	is	Cartesian

Face-centered	
collision	flux
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Temporal	Scales	at	Tokamak	Edge

Reference: Porter,	et	al.,	Physics	of	Plasmas,	2000

Tokamak	edge	density	and	temperature	
Eigenvalues	(time	scales)
of	the	entire	RHS,	and	
the	Vlasov	and	collision	
terms	separately

Hot	core
N = 1e20 m-3,
T = 500 eV

Cold	edge	N = 1e19 m-3, T = 20eV At	the	cold	edge

Jacobians	computed	using	
finite-differences	on	a	very	
small	grid
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Preconditioning

Exact	Jacobian
(never	assembled)

Preconditioner
(sparse	matrix)

≈

o Use	lower	order	finite	differences	to	construct	
the	preconditioning	matrix

o More	sparse	than	the	actual	Jacobian
o Assembled	and	stored	as	a	sparse	matrix

o 5th order upwind for advective terms
o 4th order central for diffusion terms

o 1st order upwind for advective terms
o 2nd order central for diffusion terms

Results	in	a	9-banded	matrix

Eigenvalues	of	the	Jacobian	of	the	actual	collisions	
term	and	the	approximation	for	preconditioning

The	preconditioner	is	inverted	using	the	Gauss-
Seidel	method (computationally	inexpensive)
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Test	Problems

Ion	parallel	heat	transport	on	
Cartesian	domains

o Case	1: 1D	dynamics	of	a	strongly	
collisional	plasma	

o Case	2: 2D	dynamics	with	varying	
collisionality;	representative	of	a	
radial	patch	at	the	tokamak	edge

Specified	electrostatic	potential
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Test	Problem	1:	1D	Ion	Parallel	Heat	Transport

Periodic

Periodic

1 unit

1 
un

it

A	2D	slab	(in	configuration	space), representative	of	cold	edge

n = 1020 m-3

T = 20 eV Highly	
collisional
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Time	history	of	
parallel	heat	flux	
(𝜏 is	the	collisional	time)
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Transport	time	scale

o Temperature	equilibrates	to	
constant	value

o Density	assumes	cosine	shape	to	
balance	electrostatic	potential

Collisional	time	scale

o Heat	flux	attains	values	consistent	
with	temperature	gradient
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ARK4	vs.	RK4	and	Effect	of	Preconditioner

Vlasov 
CFL

Collision 
CFL Number of Function Calls* Wall time (seconds)

No PC With PC Ratio No PC With PC Ratio

0.2 2.4 388,408 397,023 1.02 1.4 × 105 1.5 × 105 1.07

0.6 6.1 156,935 142,297 0.91 5.7 × 104 5.3 × 104 0.93

0.9 9.7 103,801 75,249 0.72 3.7 × 104 2.7 × 104 0.73

1.1 12.1 89,544 61,298 0.68 3.3 × 104 2.3 × 104 0.70

0.04 0.5 260,000 1.1 × 105

* Number	of	function	calls	=	Calls	from	time	integrator	(time	steps	× stages)	+	number	of	Newton	iterations	+	number	of	GMRES	iterations

Computational	cost	of	ARK4	with	and	without	preconditioner	(first	4	rows)	and	RK4	(last	row)
Preconditioner	for	ARK4:	Gauss-Seidel	solver	with	80	iterations	

o Grid	size:	6 (x) × 64 (y) × 36 (v||) × 24 (µ), solved on 192 cores (2.6 GHz Intel Xeon)
o Preconditioner	results	in	some	speed-up	at	higher	CFL	numbers
o Overhead	of	assembling	and	inverting	the	preconditioning	matrix	is	relatively	small
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Test	Problem	2:	2D	Ion	Parallel	Heat	Transport

A	2D	slab	(in	configuration	space), representative	of	the varying	collisionality	in	the	edge	region

n = 1020 m-3

T = 20 eV 
Periodic

Periodic

1 unit

1 
un

it 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

x

k
||
 λ

min = 0.066

max = 1.268

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

x 10
19

x

ρ
0
(x

) 
(m

−
3
)

min = 5.2e+18
max = 1.0e+20

o As	x à 0,	the	plasma	is	weakly	collisional	due	to	low	density:	the	
collisional	mean	free	paths	are	comparable	to	temperature/density	
gradients,	and	collisional	time	time	scales	are	comparable	to	transit	
time	scales.

o As	x à 1,	the	plasma	is	strongly	collisional	due	to	high	density:	the	
collisional	mean	free	paths	are	much	smaller	than	
temperature/density	gradients,	and	collisional	time	time	scales	are	
much	faster	to	transit	time	scales.
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Test	Problem	2:	2D	Ion	Parallel	Heat	Transport
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Method Vlasov CFL Collision CFL Number of Function Calls Wall time (seconds)

No PC With PC No PC With PC

ARK4 1.1 25.8 52,551 30,852 2.5 ×104 1.6 ×104

RK4 0.02 0.52 260,000 1.7 ×105

o Grid	size:	32 (x) × 32 (y) ×
36 (v||) × 24 (µ)

o Fastest	stable	solution:	
ARK4	is		~11x	faster	with	
~50x	larger	time	step.	
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o IMEX approach for strongly-collisional tokamak edge plasma

ü Collisions integrated in time implicitly while Vlasov term integrated in time explicitly

ü Wall time for fastest stable solution significantly reduced

ü Low order preconditioning results in lower computational cost at high collision CFL
numbers

o Future work

• More efficient solver for inverting the preconditioning matrix (Gauss-Seidel needs 80
iterations!)

• Implement IMEX for other fast scales (electrostatic Alfven waves, parallel electron
transport, ion acoustic modes, parallel ion transport)

Summary	and	Future	Work



Thank you.
Questions?


