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Abstract—Scientific computing requires trust in results. In
high-performance computing, trust is impeded by silent data
corruption (SDC), in other words corruption that remains
unnoticed. Numerical integration solvers are especially sensitive
to SDCs because an SDC introduced in a certain step affects all
the following steps. SDCs can even cause the solver to become
unstable. Adaptive solvers can change the step size, by comparing
an estimation of the approximation error with an user-defined
tolerance. If the estimation exceeds the tolerance, the step is
rejected and recomputed. Adaptive solvers have an inherent
resilience, because some SDCs might have no consequences on
the accuracy of the results, and some SDCs might push the
approximation error beyond the tolerance. Our first contribution
shows that the rejection mechanism is not reliable enough
to reject all SDCs that affect the results’ accuracy, because
the estimation is also corrupted. We therefore provide another
protection mechanism: at the end of each step, a second error
estimation is employed to increase the redundancy. Because of
the complex dynamics, the choice of the second estimate is
difficult: two methods are explored. We evaluated them in HyPar
and PETSc, on a cluster of 4,096 cores. We injected SDCs
that are large enough to affect the trust or the convergence
of the solvers. The new approach can detect 99% of the SDCs,
reducing by more than 10 times the number of undetected SDCs.
Compared with replication, a classic SDC detector, our protection
mechanism reduces the memory overhead by more than 2 times
and the computational overhead by more than 20 times in our
experiments.

Index Terms—high-performance computing, resilience, fault
tolerance, silent data corruption, numerical integration solver

I. INTRODUCTION

Several reports [1], [2], [3], [4] highlight that many scientific
applications suffer from corruption without any notification
from the firmware or the operating system. Consequences of
these corruptions, called silent data corruptions (SDCs), are
worrisome: loss of data, untrustworthy results [5], or cascading
patterns of corruption [6]. Their sources are also wide, ranging
from electromagnetic interference [7] to aging of hardware
components. Moreover, the situation is expected to worsen
for the next generation of supercomputers: Snir et al. [8]
estimated that the SDC rate is likely to increase in future
exascale systems.

Resilience to SDC is defined as the ability of a system
to achieve its design purpose even in presence of SDCs. In
this study, we focus on the resilience of numerical integration
solvers. These solvers provide an approximate solution of a
differential equation. They are widely used in many different

contexts, such as acoustics, heat transfer [9], fluid dynamics,
weather prediction, and quantum mechanics [10]. In previous
work [11], we showed that solvers can remain unaffected
by some SDCs, while other SDCs, which we refer to as
significant, impair the user’s accuracy expectation and may
render the solution unstable. Solvers are particularly sensitive
to significant SDCs because an SDC introduced at a certain
step might have consequences on the following ones. Solvers
are classified into fixed solvers and adaptive solvers. Fixed
solvers have a constant step size. At the end of each step,
adaptive solvers estimate an approximation error by subtract-
ing two approximated solutions, one of which is less accurate
than the other one. This estimate is then compared with user-
defined thresholds. This approach allows controlling the step
size or even rejecting some steps. In the presence of SDCs, this
estimate is corrupted, however, and might be underestimated.
Corrupted steps might not be rejected, while the step size
might be increased beyond stability bounds.

This paper provides a resilient and lightweight mechanism
for detecting SDCs in adaptive solvers. More specifically, the
key contributions are the following.

• We show that the rejection mechanism of adaptive solvers
is unable to reject all significant SDCs.

• We derive a lightweight and robust mechanism that uses
two different strategies for checking the validation of a
step.

• The first strategy is inspired by the state-of-the-art adap-
tive impact-driven (AID) SDC detector [12].

• The second strategy computes another estimate of the
approximation error based on a second numerical inte-
gration solver.

• Because finding two error estimates that agree is diffi-
cult for adaptive solvers, we provide an algorithm that
automatically selects the best estimate.

• We measure the resilience properties of our mecha-
nism in a high-performance computing (HPC) application
with two scientific libraries: HyPar [13], a hyperbolic-
parabolic differential equation solver, and PETSc [14],
[15], [16], a scalable toolkit for partial differential equa-
tions.

The remainder of this paper is organized as follows. In
Section II we describe the model of SDCs that we consider
and the high-performance computing application used for



our experiments. In Section III we explain how a numerical
integration solver works. In Section IV we show that adaptive
solvers can naturally reject only a part of the significant
SDCs. In Section V we detail our double-checking method
and present its implementation. Experiments are described in
Section VI. In Section VII we discuss related work, and in
Section VIII we draw our conclusions.

II. DETECTION OF SILENT DATA CORRUPTION

We describe here the SDC model and the application we
used.

A. Silent Data Corruption Model

A silent data corruption occurs when a program provides
an output that is correctly formatted but is unexpected.
For example, in the case of the Pentium FDIV bug [17],
4195835/3145727 provided 1.333820449136241002 instead
of 1.333739068902037589: final outcomes were wrong, but
the error might not be detected. In memory, a corruption
is more likely to occur in data than in instructions because
instructions occupy less memory than data do, and corrupted
instructions typically result in crashes and not silent corrup-
tions. At exa-scale, corruptions will likely happen in latches
and flip-flops of processors [8]. Other mechanisms besides
SDC detection, such as checkpointing, may be employed for
protecting an execution against instruction corruptions. We
assume here that corruptions affect only data.

An SDC is called nonsystematic when it affects a program
randomly. Such SDCs typically are triggered when radiation
or aging hardware flips one or several bits [18]. On the
contrary, a systematic corruption is triggered by a repeatable
pattern such as a bug, as in the case of the Pentium FDIV
bug. The probability of SDCs is low, and it is unlikely
that two nonsystematic SDCs occur two times consecutively
in the same bits. Therefore, correction can be obtained by
recomputing a corrupted step to recover from a nonsystematic
SDC. This prevents the execution from infinite recovery loops.
In this study, we consider only nonsystematic SDCs.

B. Consequences of SDCs in Numerical Integration Solvers

Numerical integration solvers are particularly sensitive to
SDCs: because of the iterative scheme that progresses by
successive steps, an SDC affects not only the corrupted step
but also the following steps. We illustrate this sensitivity with
two examples.
• In nonlinear ordinary differentiel equations (ODEs), the

stability region of the ODE method depends on the
current step. An SDC can bring the solution outside
the stability region. For example, in the equation dx

dt =
(x−1)2, an initial point greater than 1 diverges to infinity,
while an initial point less than 1 converges to 1.

• Even though the corruption is silent in the solver, it
can produce corrupted results in the next stages of the
application’s workflow. For example, in image process-
ing, feature extraction can be based on solving a partial
differential equation (PDE) as shown by Zhou et al. [19].

If the PDE solution is incorrect, the iterative process of
level set evolution may not converge.

Solvers require several function evaluations (defined in Section
III) to compute a step. Corruptions are more likely to affect
the function evaluations because those are the most computa-
tionally expensive part of a solver.

C. Objectives of Our SDC Detector

Replication is a generic solution for detecting all nonsys-
tematic SDCs. Hence, a new SDC detector should have lower
memory and/or computational overhead than does replica-
tion. For a numerical integration solver, an SDC detector
is a function of the last steps and last function evaluations.
Minimizing the computational overhead means computing as
few additional operations as possible. Minimizing the memory
overhead is equivalent to storing as little extra data as possible.

Correction can be achieved by recomputing a step that
is detected as corrupted. A detector can do a false positive
when it asked a noncorrupted step to be recomputed. False
positives waste resources; minimizing the overheads requires
maintaining the number of false positives at a low level.

D. Components

The numerical integration solvers represent one step in
a scientific application. Section II-D shows an overview of
a typical HPC workflow composed of a resilient numerical
integration solver. The SDC detection is done at each step.
When a step is found to be corrupted, it is recomputed in
order to allow the solver to continue.

HPC application

Numerical 
integration 

solver

… …

Resilient numerical integration solver

Step n Detection Step 
n+1

Rejected Validated

… …

Figure 1. SDC detector for an HPC application with an iterative numerical
integration solver. At the end of each step, the SDC detector decides whether
to validate or reject the step.

E. Modeling SDC

We consider here SDCs that occur randomly on data. For
mathematical discussions, we model an SDC as a random
variable ε added to a deterministic variable X that is part of
the iterative solver. If Xo and Xc are resp. the noncorrupted
and corrupted value of X , then Xo = X , and Xc = Xo + ε.
The letter c stands for corrupted and o for original.

Concerning simulations, recent papers on SDC detections
propose different ways to inject SDCs. We preferred, therefore,



being exhaustive in our simulations. On the one hand, in sev-
eral papers [20], [21], injections were done by randomly flip-
ping bits in data items. In the following, we refer to singlebit
SDCs when one bit is flipped inside a data item, or multibit
SDCs when several bits are flipped. For example, the IEEE
754 half-precision representation of 1, 0011110000000000,
might become 0111110000000000 = ∞ with a singlebit
SDC or 0000010000000000 = 2−14 with a multibit SDC.
The number of bit-flips in multibit SDCs is drawn from a
uniform distribution. In our previous work [11], we compared
several probability distributions to choose the position of the
bit-flip, and we noticed that uniform distribution provides
similar results to other distributions. Although multibit SDCs
might seem less likely than singlebit SDCs, they are also not
protected by error-correcting code memory [22].

On the other hand, a bit-flip on lowest-order positions may
not have an impact on the results, whereas a bit-flip in highest-
order positions may crash the application or be easy to detect.
Consequently, Benson et al. [23] simulated SDC injections by
multiplying a data item with a random factor. The factor is
drawn from a normal distribution with zero mean and unit
variance. We refer to this method as scaled injections.

In both cases, we injected SDCs on some function eval-
uations. Injecting SDCs on all function evaluations would
create unrealistic cascading patterns. A function evaluation
was thus corrupted with a probability of 1/100, but a lower
probability does not affect the detection performance. In every
experiments at least 10, 000 SDCs were injected to provide
statistically significant detection performance.

F. Simulations

Our numerical experiments used HyPar [13], a high-order,
conservative finite-difference solver for hyperbolic-parabolic
PDEs. We also use the time integrators (ODE solvers) im-
plemented in PETSc [14], [15], [16], a portable and scalable
toolkit for scientific applications. HyPar and PETSc are written
in C and use the MPICH library on distributed computing
platforms.

The use case solves the problem of a rising warm bubble
in the atmosphere. This problem is used as a benchmark
for atmospheric flows [24], [25]. The governing equations
are the three-dimensional nonhydrostatic unified model of the
atmosphere [26].

The use case is solved with HyPar. The domain is dis-
cretized on equispaced Cartesian grids. For solving the
hyperbolic-parabolic PDEs, the finite-difference methods,
called the fifth-order WENO [27] and CRWENO [28]
schemes, were used to compute the spatial derivatives. This
computation results in an ODE in time that is solved by using
an ODE solver implemented in PETSc. SDCs were injected
inside the ODE solver, but they represent also corruptions
that could occur inside HyPar. In the following, several
ODE solvers are compared: Heun-Euler, Bogacki-Shampine
and Dormand-Prince methods [29]. They have an increasing
accuracy but also an increasing memory and computational
cost.

Figure 2. Rising thermal bubble: Density perturbation (ρ′) contours at 0 s
(initial), 100 s, 150 s, and 200 s (final). Ten contours are plotted between
−0.0034 (red) and −0.0004 (blue). The cross-sectional profile is shown at
y = 500m.

Figure 2 shows the density perturbation contours for the
rising thermal bubble case at 0 s, 100 s, 150 s, and 200 s, solved
on a grid with 643 points. The bubble rises as a result of
buoyancy and deforms as a result of temperature and velocity
gradients.

The experiment was done on the Blues cluster at Argonne
National Laboratory. The cluster is composed of 310 com-
pute nodes, 64 GB of memory on each node, 16 cores per
compute node with the microarchitecture Intel Sandy Bridge
and a theoretical peak performance of 107.8 TFlops. PETSc
is configured with MVAPICH2-1.9.5, shared libraries, 64-bit
ints, and O3 flag.

G. Detection Performance

Detection performances are based on the false positive rate
and the true positive rate. The false positive rate (FPR) is
defined as the ratio between the number of noncorrupted
steps that are rejected and the number of noncorrupted steps.
Similarly, the true positive rate (TPR) is the ratio between
the number of corrupted and rejected steps and the number
of corrupted steps. The false negative rate (FNR) is the ratio
between the number of accepted but corrupted steps and the
number of corrupted steps.

III. BACKGROUND AND CONTEXT

We introduce here the notion of local truncation error
(LTE) that is the basis of our new detection method. We also
introduce adaptive solvers that are the targets of this work.



A. Numerical Integration Solvers

1) Differential equation: Our study focuses on numerical
integration solvers. These solvers approximate the integration
of a differential equation. They are iterative, time-stepping
methods. For stiff problems, namely, problems that are nu-
merically unstable, the dynamics are so complex that basic
properties such as extrapolation, as used in [12], [23], provide
limited SDC detection. If the differential equation contains
one independent variable, it is called an ODE, whereas with
multiple independent variables it is called a PDE. A PDE may
be solved with the method of lines, where all but one variable
is discretized. In this way, a PDE is solved by solving several
ODEs. In this paper, we consider an ODE method, that solves
an initial value problem formulated as

x′(t) = f(t, x(t)), x(t0) = x0,

with t0 ∈ R, x0 ∈ R, x : R→ Rm, and f : R× Rm → Rm. 1

ODE methods approximate the exact solution of the ODE
x(tn) into xn, with n ∈ 1, ..., N , tn = t0 + nh, and h ∈ R∗+
where the step size.

ODE methods can be explicit or implicit. Explicit methods
compute the step n from previous steps, whereas implicit
methods also use the current step n. Implicit methods require
solving a system of equations. This extra computation is
worthwhile when implicit methods can use larger step sizes
than explicit methods can. This is the case for stiff problems.

ODE methods are composed of several terms that are
computed from the differential equations. We denote those
terms (Ki)i. For example, in explicit Runge-Kutta methods,

xn+1 = xn + h

s∑
i=1

biKi

∀i ≤ s,Ki = f

tn + cih, xn + h

i−1∑
j=1

aijfn,j

 .

The coefficients (aij)ij , (bi)i, (ci)i are given by the methods.
2) Control of the approximation error: Numerical integra-

tion solvers produce inherent approximation errors. The LTE
is the absolute difference between the approximation error
introduced at a step n+1 and the exact solution started at step
n, whereas the global truncation error (GTE) is the absolute
difference between difference between the approximation error
introduced at a step n+ 1 and the exact solution started at the
first step. Given the step size h, an ODE method is said to have
an order p if the LTE at step n is LTEn = O(hp+1) and the
global truncation error at the last step N is GTEN = O(hp).

The choice of step size is a difficult trade-off: with a
decreasing step size, the approximation error is decreased;
but more steps increase the computational time. The step size
cannot exceed a certain region of stability, which depends
on the function f and the employed ODE method. Adaptive
solvers differ from fixed solvers in that the step size varies
according to an error estimate that is an estimation of the

1f is L-Lipschitz continuous.

GTE or LTE. For performance reasons, most of the solvers
change the step size only with an estimation of the LTE.

3) Assumption: In the absence of SDCs, we assume that the
solver works well. This means that it converges in a limited
number of steps and achieves the user’s accuracy expectations.

B. Design of Adaptive Solvers
In the case of an adaptive solver, the user explicitly states

the maximum acceptable approximation error with a desired
absolute TolA or a relative TolR error tolerance. TolA is used
to control the error for small values of ||xn||, and TolR for
larger values. In practice, the error estimate is based on the
LTE, so for every step the algorithm verifies that the estimated
local truncation error satisfies the tolerances provided by the
user and suggests a new step size to be taken.

The adaptive controller at step n forms the error level Errn
and the scaled error SErrn as

Errn = TolA + ||xn||TolR ,

SErrn = m
1
q

∥∥∥∥ |xn − x̃n|Errn

∥∥∥∥
q

,

where the errors are computed componentwise, m is the
dimension of x, and q is typically 2 or ∞ (max norm). The
error tolerances are satisfied when SErrn ≤ 1.0.

1) Estimating the local truncation error: Usually, estima-
tion of the LTE consists of subtracting xn with an approxima-
tion of it, x̃n:

xn − x̃n = xn − u(tn, n− 1)− (u(tn, n− 1)− x̃n) , (1)
= LTE[x]n − LTE[x̃]n. (2)

Although estimates based on Richardson’s extrapolation can
be employed [30], the estimation is generally based on an
embedded method. Embedded methods compute at each step
two results at two different orders p and q: xpn and xqn (in
general |q−p| = 1). The solution is propagated by one of these
results, while the second result provides the approximation x̃n
that is used to compute an estimate of the LTE at step n. If q
is at a higher order than LTEp, then the difference between
xpn and xqn is an estimate of the LTE of xpn:

xpn − xqn = LTE[xp]n − LTE[xq]n (3)

= LTE[xp]n +O(hq+1). (4)

2) Control of error estimation: Based on this error estimate,
in practice the step size that would satisfy the tolerances is

An+1 = α(1/SErrn+1)
1

p̂+1 ,

hnew(tn) = hold(tn) min(αmax,max(αmin, An+1)) , (5)

where αmin and αmax keep the change in h to within a certain
factor. We impose α < 1 so that there is some margin for
which the tolerances are satisfied and so that the probability
of rejection is decreased in the SDC-free case.

In this study we use the following settings: α = 0.9, αmax =
10, αmin = 0.1, and q = 2. These are usually employed
for adaptive solvers and are the default settings of PETSc.

Therefore, the scaled error is SErr =
√

1
n

∑
n
|x−x̃|2
Err2 , and the

step size is adjusted as hnew = hold min(10,max(0.1, 0.9A)).



3) Scheme of an adaptive controller: The adaptive con-
troller works in the following way. After completing step n, if
SErrn ≤ 1.0, then the step is accepted, and the next step is
modified according to (5); otherwise the step is rejected and
retaken with the step length computed in (5).

IV. RESILIENCE OF ADAPTIVE CONTROLLERS

Chen et al. [31] observed that some solvers have an inher-
ent resilience. In the following, we extend this point to all
adaptive solvers. Experimentally, we observe that the adaptive
controller rejects some steps where the error estimate exceeds
a certain threshold due to an SDC.

However, this assumes that the adaptive controller is not
corrupted in the presence of an SDC. This assumption does
not hold because the error estimation used by the adaptive
controller is computed from corrupted results. In Section IV-B,
we observe that the error estimate can be shifted under the
threshold of the adaptive controller and leave the SDC-affected
step unrejected.

A. Inherent Resilience

1) Significant and insignificant SDCs: Numerical integra-
tion solvers have an inherent approximation error depending
on the integration method and its order p: the GTE is O(hp).
When the lowest-order bit is flipped, the impact is insignificant
with respect to the approximation error, and this SDC does not
affect the accuracy of the results. Basically, we call insignif-
icant any SDC that does not affect the user’s expectation in
accuracy. Other SDCs affect higher-order bits, and then they
drastically increase the error or may even cause the solver to
diverge. These SDCs are referred to as significant.

Distinguishing significant and insignificant SDCs in the
general case is difficult. In our previous work on fixed solvers
[11], the user did not give an explicit expectation of accuracy,
and we considered that any SDC higher than a tenth of the
LTE was significant. In the context of adaptive solvers, we
can consider a corruption is significant when the scaled error
is above 1.0. More precisely, we measure the LTE when a step
is corrupted. Then, we recompute the step in order to know
what would have been the LTE without corruptions. When the
scaled error by the tolerances is drifted above 1.0, the step is
rejected and the corruption is considered significant. Later, we
compute detection performances also for significant SDCs. For
example, the significant false negative rate is the ratio between
the number of steps that are accepted but corrupted with a
significant SDCs, and the number of corrupted steps with a
significant SDCs.

2) Rejection of corrupted steps: In Section II, we saw
that an error estimate exceeding the tolerances TolA and
TolR is rejected because the approximation error is considered
unacceptable for the user.

When an SDC occurs and the approximation error is shifted
outside the tolerance because of the SDC, the step is naturally
rejected. In this case, the step size is reduced according to
equation (4); then the next noncorrupted step observes that the
error estimate is too small and increases the step size. Overall,

the computation time is increased just during one step, while
the accuracy is preserved.

The corrupted step is not rejected in two cases: if the
SDC shifts the approximation error below the tolerance or
if the SDC is small enough to avoid the approximation
error’s exceeding the tolerance. Accepting such steps seems
dangerous, however. One could object that the approximation
error can be higher than it would have been without the SDC;
even if the current step is below the tolerance, it might affect
the next steps. Nevertheless, an adaptive solver is designed
in a way that if all steps are below the tolerances, then the
expected accuracy is achieved. Accepting such corrupted steps
might increase the approximation error on the next steps, but
the expected accuracy will be achieved.

One caveat must be added. The approximation error is only
estimated. In the presence of an SDC, the estimate is also
corrupted, and its value might differ from the real value of the
approximation error. This case is considered in Section IV-B.

We injected SDCs in the use case introduced in Section II.
In Table I, we show the detection performances of the adaptive
controller.

The false positive rate remains below 0.1% for all consid-
ered ODE methods. At the same time, the true positive rate is
usually below 50%. Singlebit SDCs are the hardest SDCs to
detect (9.3%), whereas multibit SDCs are the easiest (55.1%).
The reason is that singlebit SDCs usually have a lower impact
on the results, as explained in Section II.

The ODE methods differ in their number Nk of the function
evaluations (Ki)i (for example, Nk = 7 for the Dormand-
Prince method, Nk = 4 for the Bogacki-Shampine method,
and Nk = 2 for the Heun-Euler method). The true positive
rate decreases with the order of an ODE method.

The true positive rate may seem low, but only significant
SDCs need to be rejected. Further experiments must thus
distinguish significant from insignificant SDCs in order to
know whether the inherent resilience of adaptive solvers is
reliable enough.

Rate Injector Heun-Euler Bogacki-Shampine Dormand-Prince
FP All 0.0 0.0 0.0
TP Multibit 55.1 46.8 35.3
TP Singlebit 13.2 11.8 9.3
TP Scaled 31.1 23.3 20.1

Table I. Detection accuracy of several ODE methods and several SDC
injectors. FP: false positive. TP: true positive. Results are given in percentage.

B. Significant SDCs Not Detected

The approximation error is not precisely known but is only
estimated. In the presence of a corruption, the estimate is also
corrupted. In particular, it may be shifted below the tolerances
of the adaptive controller; in such a case, the step would be
accepted. We give several examples.
• In the extreme case, the memory of (Ki)i≥0 could be

reset. In this case, the corrupted error estimate is equal to
zero; consequently the step is accepted, and the step size
is increased by αmax. The solution would be the same



as during the last step: xn = xn−1. The approximation
error could then be unacceptable with respect to the user’s
requirements.

• Because any Ki depends on other (Kj)j 6=i, the corruption
of a certain Kl corrupts the other (Kj)j 6=l. Such cascad-
ing patterns increase the possibility of underestimating
the approximation error.

• The SDCs can affect only the estimate. In this case,
the estimate can be completely decorrelated from the
approximation error.

Consequences of accepting a corrupted step can be disastrous.
Not only will the corrupted step exceed the user’s accuracy
expectation, but the next steps will be initialized with a
corrupted result. Moreover, the step size might be increased
after the corrupted step, and it might even exceed its stability
region; in such a case, the solution may not converge at all.

In our use case, we observe that this phenomenon can
occur with a random corruption. We report rates for significant
corruptions, namely, steps whose real scaled LTE is higher
than 1.0. The real scaled LTE is computed from the differ-
ence between the corrupted solution xcn and a noncorrupted
approximation solution x̃on. We report the false negative rate
of those significant SDCs, called the significant false negative
(SFN) rate. We recall that the false negative rate is equal to
1 minus the true positive rate. In Table II, we show the false
negative rate of the adaptive controller. The false negative rate
with all steps is higher than the significant false negative rate,
because insignificant SDCs can have too low an impact on the
results to be detectable.

While the SFN rate achieves 13.3% for the Heun-Euler
method with scaled SDCs, the rate increases dramatically to
50.4% for the Dormand-Prince method. The reason is that the
number Nk of function evaluations (Ki)i is higher for the
Dormand-Prince method. In this case, more patterns of SDCs
can lead to an underevaluation of the error estimation, and
the probability of nondetection is thus higher. While the false
negative rate with all steps is higher with singlebit SDCs than
with scaled SDCs, the significant false negative rate is lower
with singlebit SDCs than with scaled SDCs. The reason is that
a singlebit SDC becomes significant when one of the highest-
order bits is flipped. This is easily detectable, whereas a scaled
SDC can be significant while being difficult to detect.

Injector Heun-Euler Bogacki-Shampine Dormand-Prince
All Sign. All Sign. All Sign.

Singlebit 86.8 5.4 88.2 10.1 90.7 15.0
Multibit 44.9 3.9 53.2 4.5 64.7 7.9
Scaled 68.9 13.3 26.7 36.1 79.9 50.4

Table II. False negative rate for several ODE methods and several SDC
injectors. Sign. = significant (only steps that are corrupted with at least one
significant SDC are considered). Results are given in percentage.

V. RESILIENCE METHOD FOR ADAPTIVE SOLVERS

We saw that adaptive solvers use an estimate to reject or
accept a step. In the presence of SDCs, adaptive solvers can
underestimate the approximation error because the estimator is

using corrupted data; in this case, the adaptive solvers may not
reject all significant SDCs. To address this issue, we increase
the reliability of the rejection mechanism by adding a second
acceptance step. When the adaptive controller accepts a step,
we apply a different rejection mechanism to validate the deci-
sion. We use this additional mechanism because the rejection
mechanism could be underevaluated following its own pattern
of corruptions. By selecting two rejection mechanisms with
different patterns, the risk of nondetection of a significant
SDCs is reduced. We call our method double-checking.

We explore here two approaches for computing the double-
checking. Both of them compute an extra estimate of the
approximation error and then compare the estimate to a
threshold function. The step is originally computed by the
method with the extra estimate. If the difference exceeds a
threshold, the step will be rejected. In order to compute the
extra estimate, the first approach uses Lagrange interpolating
polynomials as presented in Section V-A, whereas the second
approach considers an estimate based on another ODE method
as explained in Section V-B. Thereafter, we denote LTE1 the
error estimate’s vector from the original rejection mechanism,
whereas LTE2 is the error estimate’s vector used by the
double-checking.

A. Double-Checking Based on Lagrange Interpolating Poly-
nomials

The SDC detector AID (presented in Section VII) uses
an extrapolation method to compute an approximation x̃n
of the solution xn. The extrapolation method is computed
from one, two, or three previous steps, but it cannot be
computed when the step size is variable. Instead, we compute
an approximation of the solution using Lagrange interpolating
polynomials (LIPs). We provide formulations for order 0, 1,
and 2:

x̃0n = xn−1,

x̃1n = xn−1
hn + hn−1
hn−1

− xn−2
hn
hn−1

,

x̃2n = xn−1
(hn + hn−1)(hn + hn−1 + hn−2)

hn−2(hn−2 + hn−1)

− xn−2
hn(hn + hn−1 + hn−2)

hn−2hn−1

+ xn−3
hn(hn + hn−1)

hn−2(hn−1 + hn−2)
.

In AID, the difference between the approximated and the
computed solution xn − x̃n is compared with a threshold
based on a user-defined constant. If the difference exceeds
the threshold, the solution is considered corrupted. Using a
user-defined constant requires a manual setting. Instead, we
compute the scaled error SErr2 (defined in Section III-B)
from xn and x̃n in the context of an adaptive solver; the step
is rejected when SErr2 is higher than 1.0. We call this method
LIP-based double-checking.



B. Integration-Based Double-Checking
Our second approach consists of computing another approx-

imation of the solution x̃n based on a different ODE method
from the one used in the solver. In order to reach a low com-
putational overhead, it must not require extra computations. It
must also have a larger stability area than the ODE method
used by the first method. Because implicit methods usually
have a larger stability area than explicit methods have, the
latter condition can be followed by employing an implicit
method for the double-checking and an explicit method for the
solver. Similarly, the scaled error SErr2 is computed from xn
and x̃n, and the step is rejected when xn − x̃n > 1.0. This
method is called integration-based double-checking. We sug-
gest employing a backward differentiation formula (BDF) for
the double-checking because it uses previous computations and
has a large stability area. We compute the estimates by storing
(xn−k)k≥0. One could also use an Adam-Moulton method:
it requires storing f(tn−k, xn−k) instead, although it often
appears less practical. BDF are multistep and implicit methods.
In the literature, several expressions for a variable step size are
given. In the following, we will use the expressions of x̃1n, x̃2n,
and x̃3n for the orders 1, 2, and 3:

x̃1n = xn−1 + hf(xn),

x̃2n =
(1 + ωn)2

1 + 2ω
xn−1 −

ω2
n

1 + 2ω
xn−2 + hf(xn),

x̃3n = hn
(wn + 1) (wnwn−1 + wn−1 + 1)

3wn−1w2
n + 4wn−1wn + 2wn + wn−1 + 1

f (xn)

+
(wn + 1) 2 (wn−1 (wn + 1) + 1) 2

(wn−1 + 1) (2wn + wn−1 (wn + 1) (3wn + 1) + 1)
xn−1

− w2
n (wn−1 (wn + 1) + 1) 2

2wn + wn−1 (wn + 1) (3wn + 1) + 1
xn−2

+
w2

n (wn + 1) 2w3
n−1

(wn−1 + 1) (2wn + wn−1 (wn + 1) (3wn + 1) + 1)
xn−3,

where ωn = hn

hn−1
and ωn−1 = hn−2

hn−1
.

BDF methods have expressions until order 6, but the sta-
bility area decreases with the order. At the same time, ODE
methods with a small order require less computation and less
storage of previous solutions (xn−k)k≥0. In this study, we
restrict our work to orders 1, 2, and 3 as to avoid stability
issues and to mitigate the overheads. By employing previous
solutions (xn−k)k.0 and the current solution xn computed
by the ODE method, BDF requires only the computation of
f(xn). For most ODE methods, however, f(xn) is used for
the next step. In this case, there is no extra computation when
the step is accepted. Certain ODE methods, called first-same-
as-last, compute f(xn) at step n; the Dormand-Prince method
is an example. Consequently, first-same-as-last methods re-
quire a lower computational overhead for computing the extra
estimate.

C. Difficulties in Gathering Two Different Estimates
While estimates of the approximation error provide similar

results in fixed solver, they differ significantly in adaptive
solvers.

The estimation of the approximation error uses solutions
computed at order p. Thus, the error estimate does not exceed
an accuracy higher than O(hp+1), even if the second ODE
method is expressed at an higher order q > p. However, x̃n
tends to be more similar to xn with an higher value of q.
Consequently, the higher q is, the smaller the error estimate
tends to be. It makes the detection less sensitive: the second
error estimate is less likely to be higher than 1.0, and fewer
steps tend to be rejected. Also, the number of false positives
decreases: fewer noncorrupted steps are rejected.

Because we want to improve the detection while maintain-
ing a low false positive rate, we adapt the order of the ODE
method. We define two constants: γ and Γ. In our experiments,
we take γ = 0.05, Γ = 0.1, and qmax = 3. When the false
positive rate is higher than γ for an order q, a formula with
one higher order q′ ≤ qmax is considered. On the contrary,
when the FPR is lower than Γ, the order of the ODE method is
decreased to q′ = q−1 ≥ 1. Γ can be chosen as the maximum
false positive rate we can accept; γ must be lower than Γ but
in the same order of magnitude as Γ. This procedure is shown
in Algorithm 1. The selection of the order is every cmax = 10
times or when the detector makes a false positive.

D. About Correctness

Let us see under which conditions the double-checking
allows to detect SDC that would not have been detected by
the adaptive controller. For this article, we consider only the
case where the solver is using the Heun-Euler method and the
LIP-based double-checking at order 1. At step n, we have the
following expressions:

xn = xn−1 +
hn
2

(f(xn−1) + f (xn−1 + hnf(xn−1)))

LTE1 =
hn
2

(−f(xn−1) + f (xn−1 + hnf(xn−1)))

LTE2 = (xn−2 + xn−1)
hn
hn−1

+
hn
2

[f(xn−1) + f (xn−1 + hnf(xn−1))] .

If the SDC shifts xn−1 by ε, then xcn = xon + ε, LTEc
1 =

LTEo
1 and LTEc

2 = LTEo
2 + hn

hn−1
ε. Here, only the second

estimate is affected by the SDC and is able to detect it. The
double-checking is thus necessary.

If the SDC shifts Ki by ε, then xcn = xon + εhn

2 , LTEc
1 =

LTEo
1−εhn

2 and LTEc
2 = LTEo

2 +εhn

2 . The double-checking
is necessary if xcn − x(tn) and LTE2 exceed the tolerance,
whereas LTE1 does not. By noting τn =

√
n.Errn > 0, it

provides the following inequalities for each component j of
the vectors:

2.
τn − xon,j + x(tn)j

hn
> εj > 2.

−τn − xon,j + x(tn)j

hn

2.
τn + LTE1,j

hn
> εj > 2.

−τn + LTE1,j

hn

2.
τn − LTE2,j

hn
> εj > 2.

−τn − LTE2,j

hn
.



Data: (xn−k)k≥0, f(xn), q,Nsteps

Result: Rejection or validation of step n
rejected = True;
SErr1 = Estimating1((xn−k)k≥0, f(xn));
// Eq. (2)
if c+ + == cmax then

/* Update ODE method’s order q */
cmax = 0;
if FPq/Nsteps < γ then

q = max (1, q − 1)
else if FPq/Nsteps > Γ then

q = min (qmax, q + 1)
end
if SErr1 == lastSErr then

/* Case of a false positive */
validation = True;
FPq + +;
c = cmax

else
bool validation = SErr < 1.0;
if validation then

SErr2 = Estimating2((xn−k)k≥0, f(xn), q);
validation = SErr2 < 1.0;
lastSErr = SErr1;

end
end
if validation then

n+ +;
rejected = False;
h = NewStepSize(Serr1, h);
// Eq. (5)

end
Algorithm 1: Our adaptive-controller’s scheme

In this case, all terms can be interpreted as random variables,
and thus an evaluation of the probability to achieve all equa-
tions is impossible. That is why we do empirical evaluations
in Section VI.

E. Implementation

The implementation was done directly inside the adaptive
controller. This allows reuse of some allocation in memory
to compute the second estimate. We refer to the adaptive
controller without the double-checking mechanism as a clas-
sic adaptive controller. Because xn−1 is already stored by
the classic adaptive controller, double-checking requires the
storage of only xn−2 and xn−3.

VI. EXPERIMENTS

In Section IV, we showed that the rejection mechanism of an
adaptive solver is able to correct only a part of the SDCs. Some
SDCs, although significant, remained in the solution because
the rejection mechanism was corrupted and did not detect
any outlier. Therefore, in Section V, we proposed a method

that enhances the rejection mechanism by double-checking the
acceptance of a step.

In this section, we experimentally validate our method with
the use case introduced in Section II. First, we show that our
method greatly reduces the risk of accepting a significant SDC.
Second, we measure the overheads and the scalability of our
double-checkings, in order to compare them with replication
and to suggest improvements.

A. Detection Accuracy

FPR TPR Significant FNR

Classic 0.0 31.1 13.3

LBDC 2.3 33.1 4.1

IBDC 4.2 41.9 1.1

Replication 0.0 100.0 0.0

Table III. Our double-checking based on Lagrange interpolation polynomials
(LBDC) and on a numerical integration method (IBDC) compared with
the expensive state-of-the-art replication and the classic adaptive controller
without our enhancement (Classic). FPR = false positive rate. TPR = true
positive rate. FNR = false negative rate. Unit is %

We applied the integration-based double-checking and the
LIP-based double-checking to the Heun-Euler method. Ta-
ble III compares their detection performances with replication
and the classic adaptive controller. Details on how we defined
the performances are given in Section IV.

The LIP-based double-checking reduces the rate of signifi-
cant false negatives by a factor of 3, whereas the integration-
based double-checking decreases the rate by a factor of 10.
This difference in accuracy results from the fact that the error
estimate used by the integration-based double-checking is
more precise than that used by the LIP-based double-checking.

B. Overheads

SDCs impact the convergence rate. For example, by shifting
the error estimate to a high value, the next step size is
reduced, and the computation takes more time. We measure
the computation time ratio (defined as the computational
overhead) between our method with injected errors and the
classic adaptive controller without injected errors to confirm
that the convergence rate does not burst. Table IV presents
also the memory overhead, due to the storage of previous step
size in the double-checking mechanism.

Overheads Memory (%) Computation (%)

Classic +0.0 +0.0

LBDC +57.6 +2.4

IBDC +42.7 +4.5

Replication +100 +100

Table IV. Overheads between our double-checking based on Lagrange
interpolation polynomials (LBDC) and on a numerical integration method
(IDBC), replication, and the classic adaptive controller (Classic).

We also added the overheads of replication: the computa-
tional overhead of replication is at least +100% plus the rate
of corrected steps, but the rate of corrected steps is below 1%,
and thus the overhead is equal to +100.



The computational overhead for LBCD and IBCD is partly
due to the cost of the double-checking and to false positives,
since false positives require recomputing a noncorrupted step.
For the integration-based double-checking, the false positive
rate is 4.2%, while the computational overhead is +4.5%.
Therefore, the computational cost of our method is due mainly
to the cost of recomputing a false positive. To a certain extent,
the computational overhead can be reduced by decreasing the
parameters γ and Γ, although doing so would also decrease
the detection accuracy. The memory overhead can appear
important but is on average two times lower than the memory
overhead of replication. It decreases with the complexity of
the ODE method of the solver: in general, the solver requires
Nk + 2 vectors of data with Nk the number of function
evaluations, whereas double-checking requires a fixed number
of vectors.

C. Scalability

Table V. Details of the mean execution time computation for the clas-
sic adaptive controller (Class.), LIP-based double-checking (LBDC), and
integration-based double-checking (IBDC). Results are given in seconds.

Component 512 cores 4096 cores

Protection Class. LBDC IBDC Class. LBDC IBDC

Double-check - 3.8e2 3.9e2 − 1.5e1 1.6e1

Step 1.2e3 1.3e3 1.3e3 4.6e2 4.8e2 4.8e2

Table V shows the mean execution time computation for the
double-checking methods and the classic adaptive controller
over 100 executions. The computational overheads remain
below 5%. Double-checking scales similarly to the step itself,
mainly because of the collective operation for computing the
norms. Moreover, the table shows that double-checking is al-
most a purely additional cost to the classic adaptive controller,
because the time execution of a step with double-checking is
almost equal to the addition between the time execution of the
step of the classic adaptive controller and the double-checking
itself. A better implementation must instead better integrate the
double-checking inside the adaptive controller. This could be
done by computing the norm of the error estimates used by the
classic adaptive controller and the double-checking methods
at the same time. Doing so requires allocating an additional
vector and thus increasing the memory overheads.

Figure 3 shows the relative performance in time (yellow)
and memory (green) compared with the classical adaptive
controller of the LIP-based double-checking (square) and the
integration-based double-checking (circle) up to 4096 cores.
The integration-based double-checking shows better perfor-
mances than does the LIP-based double-checking in memory,
time execution, and detection accuracy. The reason is that the
integration-based double-checking is based on mathematical
properties of solvers and is more specific than the Lagrange
interpolation polynomials. The relative performance is com-
puted as the difference between the performance of the double-
checking and the classic adaptive controller, divided by the
performance of the classic adaptive controller. The overheads

Figure 3. Relative performance in time and in memory of the LIP-based
double-checking (LBDC) and integration-based double-checking (IBDC)
compared with the classic adaptive controller until 4,096 cores.

tend to decrease with the number of cores, because the SDC
detectors provide a better scalability than the rest of HyPar
does. Indeed, as the number of cores decreases, parts of HyPar
that cannot be parallelized become more and more important
with respect to the cost of the double-checking.

VII. RELATED WORK

The resilience to SDC has been extensively studied for
several years. While some methods were generic, others tend
to be more specific to certain contexts.

A. Generic Solutions

The most generic solution for achieving the resilience to
SDCs is replication [32]. It duplicates an execution and
compares the results of the two executions. An SDC is
reported when the results differ. In these cases, the overheads
in memory and in computation are at least +100%. Once
an SDC is detected, the execution needs to be re-executed
in order to provide a correction. Alternatively, a correction
can be obtained directly by using a variant called triple-
modular redundancy [33]. Triple-modular redundancy executes
the simulation three times; if one result differs from the two
other results, this result is claimed to be corrupted, and one of
the two other results is kept. The overheads thus read +200%.
Reducing them is the challenge of the new methods.

B. Algorithmic Resilience

At a higher level, resilience can be achieved by using
algorithm properties. Algorithm-based fault tolerance in the
context of linear algebra has a large body of work [34], [35].
Several works have highlighted inherent resilient properties



inside algorithms. For example, Pauli et al. [36] showed
that even in presence of the nonrecoverable samples, Monte
Carlo methods can still converge; and the authors provided
recommendations to enhance resilience.

Chen et al. [31] provided an extensive survey of algorithms
that can naturally reject some SDCs. In particular, they showed
that computing a Runge-Kutta method with two different step
sizes allows rejecting some SDCs. Their algorithm is derived
from the Richardson extrapolation and computes an error
estimate. Our work can be seen as a significant improvement
of this method, since we showed in Section IV that not all
SDCs are filtered out with an error estimate.

C. Fixed Numerical Integration Solvers

In the context of fixed numerical integration solvers, several
methods extract a surrogate function S and compare S with a
threshold function T . The step is validated when |S | < T .
Correction can be achieved with a rollback to the previous
step.

The adaptive impact-driven detector AID [12] developed by
Di and Cappello is designed to detect SDCs in an iterative,
time-stepping method with a fixed step size. The surrogate
function is an error estimate obtained from the difference
between xn, the result at step n, and x̃n, an extrapolation
of previous results. These extrapolation methods are consid-
ered: the last value, a linear extrapolation, or a quadratic
extrapolation. The best method is calculated by the best-fitting
algorithm every p = 5 steps. Basically, this algorithm chooses
the extrapolation method that minimizes the error of extrapo-
lation or the memory cost. T is computed from η the number
of false positives, ε the maximum error of extrapolation, r
the interval of admissible values, and a user-defined error
bound upon which an SDC is considered as unacceptable:
T = (1 + η)(ε + θr). AID is designed for fixed step-
size because of the formulation of the extrapolation methods.
However, Lagrangian interpolation polynomials, employed by
our method LBDC, is designed for variable step sizes.

The surrogate function of Hot Rode [11] computes the
difference between two error estimates, while the threshold
function is initialized with first samples and is modified with
the number of false positives. Hot Rode is restricted to fixed-
solvers: as explained in Section V-C, estimates adapted to
variable step sizes may differ significantly in adaptive solvers.
Consequently, the surrogate function is more sensitive to
stiffness than to SDCs.

VIII. CONCLUSION

In this study, we showed that two kinds of SDCs can occur
in a numerical integration solver. Some, called significant, can
exceed the user-defined tolerance of the approximation error.
They may even hinder the convergence of a solver. Others,
called insignificant, have no impact on the results with respect
to the intrinsic approximation error of a solver.

Some solvers have an adaptive controller that controls the
step size from an estimation of the approximation error. We
showed that the rejection mechanism of this adaptive controller

can correct some SDCs by rejecting corrupted steps. But an
important number of significant SDCs are not rejected because
the rejection mechanism is corrupted itself in the presence of
an SDC.

Our solution consists in double-checking the acceptance
of each step. Two strategies are proposed. The first strategy,
called LIP-based double-checking, is derived from AID, a
state-of-the-art SDC detector. An error estimate is obtained
from the difference between the result of the solver and a
prediction obtained by Lagrange interpolation polynomials.
When the error estimate is higher than a certain threshold
function, the step is rejected. The second strategy, called
integration-based double-checking, computes an error estimate
from the difference between two results: one from the ODE
method used by the solver and one from another ODE method.
This latter ODE method is a backward differentiation formula,
which will usually get a larger stability area than with the
ODE method of the solver. A difficulty arises, however,
with variable step sizes. Error estimates might not agree,
resulting in a high false positive rate. An algorithm is given to
automatically select the best error estimate based on the false
positive rate. With respect to the LIP-based double-checking,
the integration-based double-checking is more difficult to
apply for high-order methods, but the error estimate is closer
to the error estimate of the adaptive controller.

Consequently, the method detects 99% of the significant
SDCs. It reduces by a factor of 10 the number of false
negatives of the adaptive controller in our experiments. At the
same time, the overheads are smaller than with replication,
by a factor of 10 in computation and by a factor of 2 in
memory on average. In our experiments, we suggest further
improvements to reduce those overheads. We plan also to
explore the use of the double-checking mechanism for implicit
solvers.
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