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The paper discusses high-order finite-volume numerical modeling of drift waves, which is 
an ubiquitous phenomenon in magnetized plasmas. It is found that some standard dis-
cretization methods applied to the conservative form of the governing equations can lead 
to a numerical instability. A method to stabilize high-order discretization is proposed and 
demonstrated to work in numerical simulations performed with the fourth-order finite-
volume code COGENT. As practical examples, a stable drift-wave solution with adiabatic 
electrons and the collisionless (universal) drift-wave instability driven by electron kinetic 
effects are considered. Application of the present analysis to a broader range of computa-
tional fluid dynamics systems is discussed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Drift waves are an ubiquitous phenomenon in a magnetized plasma [1,2]. They are supported by plasma density or 
temperature gradients, can be destabilized by a variety of physical mechanisms, and play an important role in regulating 
magnetized plasma transport. It is therefore of significant practical importance to develop advanced numerical methods for 
the analysis of drift waves and the associated drift-wave turbulence.

The governing equations for magnetized plasma dynamics, including the effects of drift-waves, can be written in a 
conservative form (i.e., expressed as a divergence of a flux function), thereby motivating the use of finite-volume methods, 
which satisfy a discrete form of the divergence theorem [3,4]. Finite-volume methods have traditionally been applied in 
first or second order, but the evolution of computer architectures encourages the use of higher-order [5]. Recently, Colella 
et al. [6] developed a useful framework for constructing finite-volume methods in mapped coordinates of any order of 
accuracy. The method proposed in Ref. [6] was then extended to the case of a mapped multiblock grid system [7], where 
the entire grid structure is represented by a union of grid blocks with a smooth function defined on each block to map 
the physical coordinate system onto a logically-rectangular (computational) grid and with high-order interpolation methods 
used for intra-block communication. That development enabled the application of high-order finite-volume methods to 
complex-geometry systems, such as the edge of a divertor tokamak. In particular, the numerical algorithms developed in 
Refs. [6,7] were employed in the high-order (4th-order) continuum gyrokinetic code COGENT to study magnetized plasma 
transport in the edge of a tokamak [8–12].

While the COGENT code was successfully applied to a variety of magnetized plasma transport problems [8–11], an 
unexpected numerical instability has been observed for the case of a drift-wave problem, even when considered in the 
simplest case of a slab (Cartesian) geometry. In this paper, we discuss the underlying mechanisms for such instability and 
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propose a stabilization method. It is found that the conservative form of the governing equations for magnetized plasma 
dynamics includes E × B advection terms that can individually drive strongly-unstable modes, but analytically should cancel 
each other. This important cancellation does not necessarily occur numerically for an arbitrary high-order discretization 
scheme, thus leading to a numerical instability. However, a stable discretization, i.e., that provides discrete cancellation of 
the required terms, is identified and demonstrated to work in COGENT simulations. We note that while the discovered 
numerical instability appears in some high-order finite-volume discretization schemes, other numerical schemes such as 
finite-difference, spectral, and finite-element (with C1 continuous elements) appear to be stable in this respect.

The paper is organized as follows: In Sec. 2, a simple hydrodynamic (fluid) drift-wave model is considered, for which the 
mechanism of the numerical instability is elucidated and an approach to a stable discretization is presented. The analysis 
is extended to a kinetic description in Sec. 3, and the stabilizing method is demonstrated to work in 4th-order COGENT 
simulations. As practical examples, we consider a stable drift-wave solution with adiabatic electrons (Sec. 3.1) and the 
collisionless (universal) drift-wave instability driven by electron kinetic effects (Sec. 3.2). The conclusions of the present 
work and its relevance to a wider range of fluid dynamics systems are discussed in Sec. 4.

2. Model equations

A simple linear model that describes the long-wavelength limit of electrostatic drift-waves in a magnetized plasma for 
the case of cold ions and adiabatic electrons is given by the following set of equations:

∂

∂t
δn + ∇ · (n0 V ) = 0, (1)

V = c
−∇φ × B

B2
, (2)

eφ

Te
= δn

n0
. (3)

Here, δn and φ are perturbations of plasma density and electrostatic potential, respectively, n0 = n0(x) is the background 
plasma density, V is the ion gyrocenter velocity, B = B ẑ is the magnetic field, e and c denote the elementary charge and 
the speed of light in vacuum, and Te is the electron temperature, which is assumed to be uniform along magnetic field 
lines. Considering, for simplicity, B = const and Te = const , we obtain the following equation for the electrostatic potential 
perturbations:

∂

∂t

(
n0

eφ

Te

)
= ∂

∂x

(
c

B
n0

∂φ

∂ y

)
+ ∂

∂ y

(
− c

B
n0

∂φ

∂x

)
. (4)

Equation (4) represent the governing equation for the drift-wave dynamics written in the conservative form, i.e., expressed 
as a divergence of a flux function. Expanding the spatial derivatives of the flux quantities we obtain

∂φ

∂t
= Vdr

∂φ

∂ y
+ Tec

eB

[
∂

∂x

(
∂φ

∂ y

)
− ∂

∂ y

(
∂φ

∂x

)]
, (5)

where Vdr = TecL−1
n /eB is the so-called drift velocity and L−1

n = n−1
0 (dn0/dx). Noticing that the last two terms in Eq. (5)

inside the square brackets exactly cancel each other for a smooth function φ(x, y, t), we obtain a simple advection equation 
for the drift-waves propagating in the y-direction.

2.1. Stability issues of a general high-order finite-volume discretization

While Eq. (4) (or, Eq. (5)) has only stable solutions in the continuum space, it is found that an arbitrary numerical 
discretization of this equation can yield numerically unstable solutions. This fact can be elucidated as follows. Although, 
the last two terms in Eq. (5) exactly cancel each other, each of them independently can drive a strong instability with the 
growth rate, γ = (Tec/eB)kxky . Here, kx and ky are the wave vectors in the x and y directions, respectively. Therefore, 
if a discrete cancellation of those terms is not enforced, a numerical instability can potentially develop. In what follows, 
we support this heuristic argument by directly analyzing stability properties of the standard 4th-order central-difference 
finite-volume discretization proposed in Ref. [6]. To simplify the problem, we consider the case of a uniform background 
density n0 = const , which is still prone to the numerical instability as evident from Eq. (5). Introducing the normalization 
parameter D B = cTe/(eB) and the flux function � = [∇φ × ẑ], Eq. (4) takes the following form

∂ D−1
B φ

∂t
= ∂�x

∂x
+ ∂�y

∂ y
. (6)

The numerical discretization of Eq. (6) is obtained as follows [6]. The spatial domain (x, y) is discretized as a union of 
rectangular control volumes
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V i =
[

xix − h

2
, xix + h

2

]
×

[
yi y − h

2
, yi y + h

2

]
, (7)

where the multi-index i = (ix, i y) is identified with the location of the control volume center, and an equal grid spacing h
is assumed in both directions. Integrating Eq. (6) over a control volume, it follows that

∂

∂t
〈〈φ〉〉i = D B

h

∑
d=x,y

(〈�d〉i+ 1
2 ed − 〈�d〉i− 1

2 ed

)
. (8)

Here, ed is the unit vector in the direction d, and the operators 〈〈·〉〉i and 〈·〉i± 1
2 ed denote an average over the cell centered 

at i and averages over the faces centered at i ± 1
2 ed , respectively. Face-averaged fluxes can be expressed via face-centered 

flux values to fourth-order accuracy by [6]

〈�d〉i+ 1
2 ed = �d,i+ 1

2 ed + 1

24

∑
d′=x,y
d′ �=d

(
�d,i+ 1

2 ed+ed′ + �d,i+ 1
2 ed−ed′ − 2�d,i+ 1

2 ed

) + O
(
h4). (9)

The discrete fluxes in the right-hand-side of Eq. (9) are related to the gradient of the potential by �i+ 1
2 ed = [(∇φ)i+ 1

2 ed × ẑ]
and can be evaluated by making use of the approximation

(∇d′φ)i+ 1
2 ed = 1

h

(
− 1

12
φi+ 1

2 ed+2ed′ + 2

3
φi+ 1

2 ed+ed′ − 2

3
φi+ 1

2 ed−ed′ + 1

12
φi+ 1

2 ed−2ed′
)

+ O
(
h4). (10)

The face-centered potential values in Eq. (10) are related to the corresponding cell-centered values by

φi+ 1
2 ed = 1

16
(9φi+ed + 9φi − φi+2ed − φi−ed ) + O

(
h4), (11)

and the final step to close the discretization system is to express the cell-centered values in terms of the cell-averages, 
〈〈φ〉〉i ,

φi = 〈〈φ〉〉i − 1

24

∑
d=x,y

(〈〈φ〉〉i+ed + 〈〈φ〉〉i−ed − 2〈〈φ〉〉i
) + O

(
h4). (12)

Equations (8)–(12) represent a fourth-order central-differencing finite-volume discretization of Eq. (6).
We now analyze the linear stability properties of the discretization in Eqs. (8)–(12) by assuming a spatially discrete 

solution in the form of

〈〈φ〉〉i = Re
{
φk exp(γ t + Ikxxix + Iky yi y )

}
. (13)

Here, the discrete wave-vectors kx,y can take the values of kx,y = 2πh−1nx,y/Nx,y , where Nx,y is the number of grid points 
in the x and y directions, respectively, and nx,y = 0, . . . , Nx,y − 1. Combining Eq. (13) with Eq. (6) by making use of the 
symbolic computation package Mathematica [13], we obtain

γ

D B
= sin(hkx) sin(hky)

13824h2

[
962 cos(hkx) − 316 cos(2hkx) + 10 cos(3hkx)

+ cos(hkx − 3hky) − 38 cos(hkx − 2hky) + 38 cos(2hkx − hky)

− cos(3hkx − hky) − 962 cos(hky) + 316 cos(2hky) (14)

− 10 cos(3hky) + 38 cos(2hkx + hky) − cos(3hkx + hky)

− 38 cos(hkx + 2hky) + cos(hkx + 3hky)
]
.

In the long-wavelength limit, hkx,y � 1, Eq. (14) gives

γ

D B
= kxky(k4

y − k4
x)

144
h4 + O

(
h5), (15)

which is consistent with a fourth-order discretization of the right-hand-side of Eq. (6) corresponding to a zero function 
in the continuum space. However, at high wavelengths, hkx,y ∼ 1, Eq. (14) predicts unstable solutions with γ ∼ D Bh−2, 
in accordance with the heuristic arguments presented earlier. For instance, taking hkx = π/4 and hky = π/2, we obtain 
γ = 0.021D Bh−2.

We note again that the numerical instability appears when a discretization scheme does not annihilate the right-
hand-side of Eq. (8). It is straightforward to show that a 2nd-order finite-volume central-difference scheme yields discrete 



M. Dorf et al. / Journal of Computational Physics 373 (2018) 446–454 449
cancellation of the unstable drive terms and, therefore, is numerically stable. The same is true for an arbitrary-order finite-
differencing scheme including centered and/or forward/backward stencils, spectral scheme, and finite element scheme with 
C1 elements. However, an arbitrary high-order (e.g., 4th-order) central-difference finite-volume discretization (e.g., given in 
Eqs. (8)–(12)), cannot guarantee numerical stability of the drift-wave problem.

2.2. A method to stabilize a high-order finite-volume discretization

A stable discretization should annihilate the right-hand-side of Eq. (8), which can be achieved if, instead of using Eq. (9), 
we directly compute the face-averaged fluxes in Eq. (8) as

〈�x〉i± 1
2 ex = φd,i± 1

2 ex+ 1
2 ey − φd,i± 1

2 ex− 1
2 ey , (16)

〈�y〉i± 1
2 ey = −φd,i± 1

2 ey+ 1
2 ex + φd,i± 1

2 ey− 1
2 ex . (17)

Note that Eqs. (16)–(17) are exact formulas for the flux quadrature. The cell-corner quantities in the right-hand-side of 
Eqs. (16)–(17) can now be expressed via cell-averaged values 〈〈φ〉〉i by making use of an arbitrary high-order approximation 
(e.g., bicubic interpolation), while maintaining the overall stability of a discretization scheme.

The numerical stability analysis in Eqs. (6)–(17) is performed for the case of a uniform background density, which does 
not formally support the drift waves. We now demonstrate that the method to compute flux quadrature in Eqs. (16)–(17)
provides stability of a high-order finite volume discretization applied to the original system (in Eq. (4)), where the back-
ground density can vary in the x-direction and drift waves can be observed. Integrating Eq. (4) over a control volume, we 
obtain

∂

∂t
〈〈n0φ〉〉i = D B

h

∑
d=x,y

(〈n0�d〉i+ 1
2 ed − 〈n0�d〉i− 1

2 ed

)
. (18)

The face-averaged fluxes in the right-hand-side of Eq. (18) can be written in terms of the face-averages 〈n0〉i± 1
2 ed and 

〈�y〉i± 1
2 ed and the pointwise values of the gradients of n0 and �y at the face centers as

〈n0�d〉i± 1
2 ed = 〈n0〉i± 1

2 ed 〈�d〉i± 1
2 ed + h2

12

∑
d′=x,y
d′ �=d

(
∂n0

∂ξd′
∂�d

∂ξd′

)
i± 1

2 ed
+ O

(
h4), (19)

where ξx = x and ξy = y. Combining Eq. (19) with Eq. (18) and performing some straightforward algebra, we obtain

∂

∂t
〈〈n0φ〉〉i = D B

h
〈�x〉i+ 1

2 ex

(
(n0)i+ 1

2 ex − 〈n0〉i
) + D B

h
〈�x〉i− 1

2 ex

(〈n0〉i − (n0)i− 1
2 ex

)
+ D B

h
〈n0〉i

∑
d=x,y

(〈�d〉i+ 1
2 ed − 〈�d〉i− 1

2 ed

)
(20)

+ 1

12
D Bh

(
∂n0

∂x

)
i

[(
∂�y

∂x

)
i+ 1

2 e y
−

(
∂�y

∂x

)
i− 1

2 e y

]
+ O

(
h4),

where it is used that ∂n0/∂ y = 0 and 〈n0〉i denotes the density average over the faces centered at ix . The terms on the 
first line in Eq. (20) describe a drift-wave oscillation to a low-order (2nd-order) accuracy; the terms on the second line 
correspond to the right-hand-side of Eq. (8) and exactly cancel each other provided the discretization in Eqs. (16)–(17) is 
used; and finally, the terms on the third line correspond to higher-order corrections. The higher-order corrections represent 
discretization of the term ∝ h2∂3φ/∂ y∂x2 and therefore can only yield a correction to the drift-wave frequency and do not 
drive an instability.

Finally, we note that the simple long-wavelength k⊥ρs << 1 model for the drift waves in Eqs. (1)–(3) does not include 
small corrections of order O (k2⊥ρ2

s ) related to the ion polarization density. Here, k⊥ is magnitude of the perturbation 
wave-vector in the plane perpendicular to the magnetic field, ρs = (mic/eB)

√
2Te/mi , and mi is the ion mass. If such 

corrections are retained, Eq. (3) takes the following form

mic2

B2
∇⊥ (n0∇⊥φ) = e2φ

Te
n0 − eδn, (21)

which corresponds to

eφk

T
= δnk

n (1 + k2 ρ2/2)
, (22)
e 0 ⊥ s
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in the Fourier space assuming that k⊥Ln  1. It is now easy to show that each of the “destabilizing” terms discussed in 
Sec. 2.1 can potentially drive the instability with the growth rate of γ ∼ (Tec/eB)kxky(1 + k2⊥ρ2

s )−1. Repeating the dis-
cretization analysis in Eqs. (6)–(16), it is straightforward to demonstrate that in the limit of h → 0, the numerical instability 
growth rate does not become infinite, but is bounded by γ ∼ D Bρ−2

s .

3. COGENT implementation

Here, the analysis in Sec. 2 is extended to a kinetic description of drift waves, and the method to stabilize high-order 
finite-volume discretization (in Eqs. (16)–(17)) is demonstrated to work in numerical simulations performed with the fourth-
order kinetic code COGENT. As practical examples, we consider a stable drift-wave solution with adiabatic electrons (Sec. 3.1) 
and the collisionless (universal) drift-wave instability driven by electron kinetic effects (Sec. 3.2).

The COGENT code describes magnetized plasma dynamics in arbitrary magnetic geometries, including a single-null di-
vertor geometry, by solving a system of gyrokinetic equations for multiple species coupled to the long-wave limit of the 
gyro-Poisson equation [9–11,14]. For illustrative purposes, here we consider a singly-charged collisionless plasma immersed 
in a uniform magnetic field B = B yey + Bzez = const , and assume that there are no variations in the z-direction, i.e., 
∂/∂z = 0. For this case, the governing equations for the gyro-averaged distribution function fα(x, y, v‖, μ) are given in the 
conservative form by

∂ fα
∂t

+
∑

d=x,y,v‖,μ

∂

∂ξd
(Vd fα) = 0, (23)

mic2

B2
∇⊥ (n∇⊥φ) = −

∑
α

qα

∫ (
2π B

mα

)
fαdv‖dμ, (24)

where the long-wavelength limit k⊥ρi << 1 is assumed, ∇⊥ is the gradient operator in the plane perpendicular to the 
magnetic field, and the 4D phase-space velocity Vd is specified by

V x = − cBz

B2

∂φ

∂ y
, (25)

V y = B y

B
v‖ + c

Bz

B2

∂φ

∂x
, (26)

V v‖ = − qα

mα

B y

B

∂φ

∂ y
, (27)

Vμ = 0. (28)

Here, B is the magnetic field magnitude, qα and mα are the species charge and mass, respectively, and the subscript α
designates the electron (e) or singly-charged ion (i) species. The Vlasov equation (i.e., Eq. (23)) is discretized in the usual 
way by integrating over a 4D control volume,

∂

∂t
〈〈 fα〉〉i = 1

hd

∑
d

(〈Vd fα〉i+ 1
2 ed − 〈Vd fα〉i− 1

2 ed

)
(29)

and employing the 4-th order formula for the flux face-averages [6] to obtain

〈Vd fα〉i± 1
2 ed = 〈Vd〉i± 1

2 ed 〈 fα〉i± 1
2 ed +

∑
d′ �=d

h2
d′

12

(
∂〈Vd〉
∂ξd′

)
i± 1

2 ed

(
∂〈 fα〉
∂ξd′

)
i± 1

2 ed
+ O

(
h4), (30)

where a second-order accurate difference approximation to the ∂/∂ξ derivatives is used. Here, hd ∝ h denotes a grid spacing 
in the direction d. We note that 〈V x〉i± 1

2 ed = −(cBz/B2)〈�x〉i± 1
2 ed and 〈V y〉i± 1

2 ed = (B y/B)〈v‖〉i± 1
2 ed − (cBz/B2)〈�y〉i± 1

2 ed , 
where � = [∇φ × ẑ] (as in Sec. 2). Therefore, in order to obtain a stable discretization, we compute the face averages 
〈Vd〉i± 1

2 ed by making use of Eqs. (16) and (17). Other details on the COGENT implementation of gyro-kinetic (i.e., Eq. (23)) 
and gyro-Poisson (i.e., Eq. (24)) equations can be found in Refs. [8] and [12]. In particular, various options, including high-
order upwind and WENO methods, are available to compute the distribution function face-averages 〈 fα〉i± 1

2 ed . For the 
simulations presented in this section, the limited 4th-order WENO-like scheme developed in Ref. [15] is used. For the time 
discretization, an explicit 4th-order Runge–Kutta scheme is employed.
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Fig. 1. COGENT convergence studies for the case of stable drift-wave oscillations with the adiabatic electron response. The number of cells per phase-space 
direction is (Nx, N y , Nv‖ , Nμ) = (Ncell, Ncell, Ncell/2, 3Ncell/8), and the time step, �t , corresponds to (Tec/eB)(4π2/L2)�t = 10.75/Ncell . The results of the 
COGENT simulations are shown with the blue circles (4th-order) and red squares (2nd-order). The dashed and solid lines illustrate the fourth and second 
order convergence rate, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.1. Stable drift-wave solution with adiabatic electrons

As a simple illustrative example, here we consider the case of a linearized adiabatic electron response, for which we 
adopt Eq. (3), i.e., (ne − n0)/n0 = eφ/Te . Here, ne and n0 are the electron and background plasma density, respectively, and 
Te = const is assumed. Furthermore, we neglect the polarization ion density term, i.e., the left-hand-side of Eq. (24), and 
take B y = 0. Under these assumptions a small-signal linear solution of Eqs. (23)–(24) is equivalent to a solution of Eq. (4).

We consider a rectangular computational domain with Lx = L y = L and periodic boundary conditions in the both 
spatial directions. The initial ion distribution function is given by a Maxwellian distribution, F0,i = n0(mi/2π Ti)

3/2 ×
exp(−mi v2‖/2Ti − μB/Ti), with a uniform temperature Ti , and a density distribution given by n0 = n(1 + sin2(πx/L))×
(1 + ε cos(4π y/L)), where the perturbation amplitude corresponds to ε = 10−6, and the domain extents of the velocity 
space, −v‖,max < v‖ < v‖,max , and 0 < μ < μmax are mi v2‖,max/2Ti = 12.25 and μmax B/Ti = 12, respectively. The linear ana-
lytic solution is given by

eφAN(t, x, y)

Te
= ε cos

{
4π

L

[
y + Vdr(x)t

]}
, (31)

where the drift velocity is specified by Vdr = (Tec/eB)(π/L) sin(2πx/L)(1 + sin2(πx/L))−1. The numerical COGENT solution, 
φC O G , is compared against the analytic solution in Eq. (31) at the time instant, t , roughly corresponding to a half-period of 
a drift wave oscillation (Tec/eB)(4π2/L2)t = 3.36. The results for the maximum numerical error computed as

Er = ε−1 e

Te
max

i

∣∣φAN(t, xi, yi) − φC O G
i (t)

∣∣, (32)

are shown in Fig. 1. Here, φC O G
i is the cell-centered numerical solution. For comparison purposes, the results from second-

order accurate COGENT calculations are presented as well.

3.2. Unstable drift-wave solution with kinetic electrons

We now adopt a fully-kinetic electron response and retain the ion polarization-density term, i.e., we consider the full set 
of Eqs. (23)–(24). In Sec. 3.1, it is demonstrated that the adiabatic electron response corresponding to ω/k‖ � V T ,e can only 
support stable drift-wave oscillations (see Eq. (31)). Retaining the kinetic electron effects of order O (ω/V T ,ek‖) yields the 
so-called universal drift-wave instability [1,2]. The instability is driven by the Landau damping effect, which provides kinetic 
dissipation, and the maximum growth rate occurs at ω ∼ V T ,ek‖ .

For illustrative purposes, we consider the case of a uniform background temperature for both ion and electron species. 
Introducing the complex perturbation amplitudes, f̃α and φ̃ , such that fα = F0,α + Re{ f̃α(x, v‖) exp(−Iωt + Iky y)} and 
φ = Re{φ̃(x) exp(−Iωt + Iky y)}, and linearizing Eq. (23), we obtain

f̃α =
cBz
B2 kyφ̃L−1

n F0,α − qα
Tα

ky
B y
B φ̃v‖ F0,α

−ω + (B y/B)ky v‖
, (33)

where F0,α is the unperturbed Maxwellian background with a uniform temperature Tα and a varying density profile n0(x). 
Integrating Eq. (33) over the velocity space and performing some straightforward algebra gives∫

f̃αd3 v = −qαn0φ̃

Tα

[
1 − (

ω − ω∗
α

)∫
d3 v

n−1
0 F0,α

ω − (B y/B)ky v‖

]
, (34)
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where we introduced the drift frequency

ω∗
α = cTα L−1

n

Bqα
ky

Bz

B
. (35)

Combining Eq. (34) and Eq. (24), we obtain an eigenvalue equation for the complex potential amplitude φ̃(x)

mic2

B2

(
B2

z

B2
k2

y − ∂2

∂x2
− L−1

n
∂

∂x

)
φ̃(x) = −q2

αφ̃

Tα

⎡
⎣1 + (ω − ω∗

α)

k‖v T ,α

+∞∫
−∞

dt
π−1/2 exp(−t2)

t − ω
k‖vT ,α

⎤
⎦ , (36)

where v T ,α = √
2Tα/mα and k‖ = (B y/B)ky . In order to make analytic progress, we consider a zero Dirichlet boundary con-

dition for the potential perturbations in the x-direction and a periodic boundary condition in the y-direction. Furthermore, 
we take L−1

n = n−1
0 (dn0/dx) = const and assume Lnk⊥  1, such that the term L−1

n ∂/∂x in the left-hand-side of Eq. (36)
can be neglected. Under these assumptions, a solution for the complex amplitude of a potential perturbation is given by 
φ̃ = exp(−Iωt + Ikxx + Iky y), where kx = πnx/Lx , ky = 2πny/L y , nx,y is the mode number in the x and y directions, and 
the frequency, ω, is found from Eq. (36), which now represents an algebraic equation. In the limit of v T ,i � ω/k‖ � v T ,e

corresponding to the cold ions and nearly-adiabatic electrons, it is straightforward to obtain [1,2]

1 − ω∗
e

ω
+ 1

2
ρ2

s k2⊥ = I
√

π
ω∗

e − ω

|k‖|v T ,e
, (37)

where k2⊥ = (Bz/B)2k2
y + k2

x . Assuming ρsk⊥ � 1, we obtain to a leading order that Re(ω) ≈ ω∗
e and Im(ω) ≈

(
√

π/2)(ρ2
s k2⊥)(ω∗

e )2/(|k‖|v T ,e).
The collisionless drift-wave instability is modeled with the COGENT code. For these simulations, we consider a rectan-

gular simulation domain with Lx = L y = L. The initial species distributions are given by Maxwellian distribution functions, 
F0,α = n0

α(mα/2π Tα)3/2 exp(−mα v2‖/2Tα − μB/Tα), with uniform temperature distributions Ti = Te = T0 and density dis-

tributions given by n0
i = n0

e = n exp(−x/4L) + εn cos(2π y/L) sin(πx/L), where the perturbation amplitude corresponds to 
ε = 10−5, and the domain extents of the velocity space, −v‖,max < v‖ < v‖,max , and 0 < μ < μmax are mα v2‖,max/2T0 = 8
and μmax B/T0 = 7.5, respectively. Note that the background density profile has a constant logarithmic spatial derivative 
Ln = −4L. Other numerical parameters correspond to B y = Bz/300, me = mi/200, ρi/L = 0.17. A periodic boundary con-
dition is used for both potential and distribution function in the y-direction. In the x-direction, a zero Dirichlet boundary 
condition is imposed on the potential. This inhibits particle flows across the x-boundaries and therefore inflow boundary 
conditions for the distribution function at the x-boundaries are not required. The analysis of the linear dispersion equation 
in Eq. (36) for the parameters of COGENT simulations show that the seeded perturbation with nx = 1/2 and ny = 1 has the 
maximal growth rate. Note that such perturbation corresponds to k⊥ρi ≈ 1, and therefore neither simulations nor Eq. (36)
can accurately predict its physical behavior. However, being the fastest growing mode it is convenient to consider such a 
perturbation for the purposes of code verification.

The results of convergence studies are shown in Fig. 2. Here, we do not intend to verify 4th-order convergence, which 
has already been demonstrated in Sec. 3.1, but rather attempt to elucidate the practical advantage of using a 4th-order 
method compared to a 2nd-order method. That is, much faster convergence of the 4th-order simulations is readily seen in 
Fig. 2. We also compare the simulation results with the analytical predictions obtained from Eq. (36) by neglecting the term 
L−1

n ∂/∂x in the left-hand-side of Eq. (36). Such approximation can introduce errors of order k⊥L ≈ 0.016, which explains 
the small difference between the converged simulation results and the analytical predictions observed in Fig. 2.

4. Conclusions

A numerical instability is found for a high-order finite-volume discretization of magnetized plasma equations governing 
the dynamics of drift waves. Written in the conservative form such equations contain the advection term c∇ · (B−1[b ×∇φ]), 
which can potentially drive fast numerical instability if the identity ∇ · ([b × ∇φ]) ≡ 0 is not discretely enforced.

The numerical instability is demonstrated for the case of a central-difference fourth-order finite-volume discretization 
applied to a simple problem of stable drift-waves oscillations with cold ion and adiabatic electron responses. In the absence 
of the ion polarization term, the growth rate is found to be inversely proportional to the squared grid spacing, γ ∼ D Bh−2, 
whereas retaining the ion polarization term can bound the growth rate at the level of γ ∼ D Bρ−2

s . Note that the normal-
ization factor D B = cTe/eB corresponds to the Bohm-diffusion scale.

A method to discretely enforce ∇ · ([b × ∇φ]) ≡ 0 and thus stabilize a numerical scheme is proposed for an arbitrary 
high-order finite-volume discretization. As a practical example, the method is implemented in the 4th-order finite-volume 
code COGENT, and demonstrated to work in numerical simulations of stable drift-wave oscillations with adiabatic electrons 
and the collisionless (universal) drift-wave instability driven by electron kinetic effects.

It is instructive to note that although the condition ∇ · ([b × ∇φ]) ≡ 0 is consistent with a zero divergence of the 
advection velocity for the simple case of the fluid description and uniform magnetic field in Eqs. (1)–(2), enforcing a discrete 
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Fig. 2. COGENT convergence studies for the case of the collisionless (universal) drift-wave instability. The fourth-order results for the growth rate (blue 
diamonds) and real frequency (red squares) are compared with the corresponding second-order results (shown with green triangles and purple circles). 
The numerical solution to Eq. (36) (neglecting the term L−1

n ∂/∂x) is illustrated with the dashed and solid lines for the growth rate and real frequency, 
respectively. The number of cells in each direction is shown under the data sets in the order (top-to-bottom) of x, y, v‖ , and μ. Due to kinetic nature 
of the instability, maintaining high resolution in the parallel velocity space for this convergence study is found to be important in order to obtain the 
fastest-growing mode number consistent with the analytical predictions. The time step in simulations corresponds to ω∗

e �t = 0.2 × (8/Ncell), where Ncell is 
the number of cells in the y-direction.

zero divergence of an advection velocity in a more general case of a gyrokinetic description, e.g., the 4D gyro-kinetic velocity 
in Eqs. (25)–(28), does not necessarily eliminate the numerical instability considered in this work. For instance, a high-order 
finite-volume discretization scheme that provides a discrete zero divergence of a 4D gyro-kinetic velocity regardless of 
whether the condition ∇ · ([b × ∇φ]) ≡ 0 is discretely enforced or not is reported in [12] for the case of a nonuniform 
magnetic field. However, consistent with the analysis presented in this work, numerically stable high-order simulations of 
drift waves with that discretization are only possible when ∇ · ([b × ∇φ]) ≡ 0 is discretely enforced.

Finally, it is interesting to point out that the analysis performed in Sec. 2 for the fluid description of drift waves in a 
magnetized plasma is of importance to the field of neutral fluid dynamics. In particular, Eqs. (1)–(2) coupled with Eq. (21)
represent the linearized version of the Charney–Hasegawa–Mima equation describing drift waves in plasmas [16] as well 
as the Rossby waves in the atmosphere and oceans of planets [17]. Moreover, considering the conservative form of the 
standard equations [18] for an incompressible 2D (vx, v y) flow written in terms of the vorticity ω = [∇ × v] · ẑ and the 
stream function φ (cf. Eqs. (1)–(2) and (3) or (21)),

∂ω

∂t
+ ∇ · ([∇φ × ẑ

]
ω

) = 0, (38)

�φ = −ω, (39)

and performing the linearization φ = φ0 + δφ around an equilibrium solution φ0, we obtain

∂

∂t
�(δφ) + ∇ · ([∇φ0 × ẑ

]
�(δφ)

) + ∇ · ([∇δφ × ẑ
]
�φ0

) = 0, (40)

where the second and the third terms contain the terms �(δφ)∇ · ([∇φ0 × ẑ]) ≡ 0 and �φ0∇ · ([∇δφ × ẑ]) ≡ 0, respectively, 
which can lead to the numerical instability considered in this work.
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