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Abstract— We present an extension of a linearized Coulomb
collision operator, previously used in several Eulerian kinetic
codes for like-species collisions and unlike-species collisions in
the case where the backgrounds about which the linearization
is made all are in collisional equilibrium, to the situation of
interpenetrating plasma streams. In the latter case, the back-
grounds cannot be taken to be in equilibrium and a significant
generalization is required. Our development is targeted toward
the Eulerian kinetic plasma code LOKI, which evolves the
Vlasov–Poisson or Vlasov–Maxwell system in a Cartesian “2 +
2-dimensional” phase space. The extended operator has been
implemented in a test code, and results of both quantitative
verification and qualitative “realizability” tests are presented.

Index Terms— Plasma simulation, plasma transport processes.

I. INTRODUCTION

INTERPENETRATING plasma streams are of interest in
astrophysics and laboratory high-energy density (includ-

ing inertial confinement) plasma experiments. Our goal is
to develop a kinetic simulation capability that can model
interactions, including turbulent interactions, between such
plasma streams. The use of Eulerian codes for kinetic plasma
problems, both laminar [1]–[4] and turbulent [5]–[7], [9]–[12],
has grown in recent years. We have based our development
on LOKI [10] which is an Eulerian kinetic plasma code that
evolves the phase-space density (“distribution function”) in a
4-D (two space+ two velocity) phase space using conservative
high-order finite-volume and finite-difference methods and
explicit Runge–Kutta (RK) time stepping. LOKI has been
used to investigate a variety of nonlinear kinetic plasma
effects [13]–[16].

Coulomb collisions can act in several important ways in
interpenetrating plasma streams. Direct effects include drag,
heating (transfer of streaming energy into thermal energy),
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isotropization and thermalization of individual streams, and
equilibration of the whole system. Coulomb collisions can
also have indirect effects through modification of growth
rates (including complete stabilization), frequencies, and mode
structure of plasma instabilities, as well as smoothing and ther-
malization of fine-scale features in the distribution functions
resulting from nonlinear evolution driven by instabilities.

Prior to this paper, LOKI had a like-species (intrastream)
collision operator implementation based on linearization about
Maxwellian backgrounds [17], [18], with a reduced (rank)
“backreaction” operator that enforces energy and momentum
conservation, maintains a version of the Boltzmann H-theorem
and also Galilean invariance. A high-order conservative finite-
difference discretization was used for the “forward” drag
and diffusion terms [15]. An extension of this operator to
interspecies collisions, in the situation where the background
Maxwellians are in equilibrium with each other (i.e., have
the same temperatures and no relative flow) was given by
Kolesnikov et al. [19].

A key need for our development was a Coulomb collision
operator that can represent both intrastream and interstream
collisions. For collisions between multiple interpenetrating
plasma streams, the background Maxwellians can no longer
be taken to be in equilibrium, and a significant extension is
needed. In this paper, we describe such an extension and its
development.

While we could have pursued a direct discretization of
the bilinear operator using solutions of Rosenbluth’s potential
equations [20] with the actual distribution functions as sources
to obtain the drag and diffusion coefficients, we have chosen
to extend the existing linearized approach. This extension
can make use of verified collision operator coding already
present in LOKI and in a previously written MATLAB-
based testbed code. We also believe that it provides a useful
alternative method that has some desirable properties. The
Rosenbluth potentials are functions of only the magnitude
of a relative velocity and can, therefore, be computed using
a 1-D lookup table. This may offer some computational
speedup relative to the direct Rosenbluth potential computation
approach, although any such speedups remain to be quantified.
It also addresses a significant issue for LOKI implementation
concerning the mixing of 2-D and 3-D velocity spaces that
would also be present in the direct Rosenbluth potential
calculation approach.

The outline of the remainder of this paper is as follows.
In Section II, we review the Landau–Fokker–Planck collision
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operator, establish the key notation, and give the very useful
Rosenbluth–Macdonald–Judd form. Section III discusses the
linearization of the operator and the particular case of lin-
earization about a Maxwellian background. The extension of
the operator to the case of multiple plasma streams, which
are inherently not in collisional equilibrium, is discussed in
Section IV. Section V discusses specific issues related to the
LOKI 2-D Cartesian velocity space, the generalization of the
reduced backreaction operator to the nonequilibrium case of
multiple plasma streams and the choices of the moments that
define the background Maxwellians. Verification of the oper-
ator, including results for a “multiproperty” verification case
that has been developed from many simpler cases that each
check an individual property of the operator, is discussed in
Section VI. Finally, Section VII gives a summary, conclusions,
and a discussion of future near-term work.

II. LANDAU–FOKKER–PLANCK COLLISION OPERATOR

The Vlasov–Fokker–Planck equation, which describes a
weakly coupled plasma charged species a, is [21]

∂ fa

∂ t
+v · ∂ fa

∂x
+A(x, v, t)· ∂ fa

∂v
= ∂ fa

∂ t

∣
∣
∣
∣
c
= −

∑

b

Cab( fb, fa)

where fa is the density in the x−v phase space, where x is the
position, v is the velocity, t is the time, and A = A(x, v, t) is
the acceleration due to electric and magnetic fields. Each Cab

is a Landau–Fokker–Planck collision operator, which describes
Coulomb collisions with species b, and is given by

Cab( fb, fa) = γabmb
∂

∂v
·
∫

dv′←→U (v − v′)

·
(

1

mb

∂

∂v′
− 1

ma

∂

∂v

)

fa(v) fb(v
′)

where
←→
U (v − v′) = 1

u
(
←→

I − ûû)

u = v − v′

γab = 2π
lnΛab

mamb

q2
a

4πε0

q2
b

4πε0

Λab = rmax

rmin
; rmax = λD

where ma and qa denote the mass and charge of species a,
rmax is an effective screening length typically taken to be the
Debye length, and rmin is a “distance of closest approach.”
For classical Coulomb collisions, this is typically taken to be
the distance at which the thermal and electrostatic energies of
colliding particles balance. The notation can be made more
compact by suppressing the velocity arguments where this is
unambiguous, for example,

ψ = ψ(v)
ψ ′ = ψ(v′)←→
U = ←→U (v − v′)

to write

Cab( fb, fa)=γabmb
∂

∂v
·
∫

dv′←→U ·
(

1

mb

∂

∂v′
− 1

ma

∂

∂v

)

fa f ′b.

The Landau–Fokker–Planck collision operator has key prop-
erties that are essential for connection to the fluid (collisional)
limit(s). Like the Boltzmann operator, it describes elastic
collisions and so conserves number density, momentum, and
energy. It also satisfies an “H-theorem”: Ḣ ≥ 0, where

H = S ≡ −
∑

a

∫

dv fa ln fa

is Boltzmann’s kinetic entropy.
With the densities, total momentum, and energy constrained,

H is maximum and Ḣ = 0 if and only if all species
are Maxwellian and in equilibrium, i.e., they have the same
temperatures and no relative flow.

A very useful form was provided by Rosenbluth et al. [20]

Cab( fb, fa) = 2γab
∂

∂v

·
[([

ma+mb

mb

]
∂Hab

∂v
fa

)

− ∂

∂v
·
(
∂2Gab

∂v∂v
fa

)]

where the “Rosenbluth potentials” satisfy

∇2
v Hab = −4π fb

∇2
vGab = 2Hab

This form is correct (in any coordinates) in 3-D velocity space
and is the basis for direct implementations of the bilinear
operator [1], [3], [4].

III. LINEARIZED OPERATOR

The preexisting implementation of Coulomb collisions in
LOKI is a like-species operator based on linearization about
a “background” Maxwellian. This is a major simplification
because the Rosenbluth potentials and the drag and diffusion
coefficients derived from them have easily calculated ana-
lytical expressions that depend only on the magnitude of a
normalized kinetic velocity in the flow frame of the field-
particle species. They can, therefore, be computed using a 1-D
lookup table. For like species, the Maxwellian background is
inherently in collisional equilibrium, i.e., it does not evolve
due to collisions. The operator also uses a “reduced” back-
reaction term, which maintains conservation of momentum
and energy and satisfies an H-theorem for the second-order
entropy (expansion of H to second order in the departure
from Maxwellian). For our application of interest, plasmas
with multiple charged particle streams, we need to treat
interstream collisions. In that case, the set of Maxwellians
that approximate the distribution functions of the streams is
no longer in collisional equilibrium, and this necessitates a
significant generalization of the existing LOKI operator.

In general, the linearization can be done about any appro-
priate “background” distribution FBa(v). Here, the subscript
“B” stands for “Background,” and “a” is the species subscript.
We formally separate the distribution function as

fa(v) = FBa(v)+ δ fa(v).

Inserting this into the collision operator (above) results in the
separation of the collision operator into a “background” (0)
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part and parts that are linear (1) and quadratic (2) in δ fa

Cab = C(0)
ab + C(1)

ab + C(2)
ab

C(0)
ab ≡ Cab(FBb, FBa)

C(1)
ab ≡ Cab(FBb, δ fa)+ Cab(δ fb, FBa)

C(2)
ab ≡ Cab(δ fb, δ fa). (II.1)

Linearization corresponds to neglecting C(2)
ab , which is valid

if C(2)
ab � C(1)

ab . Roughly speaking, this holds if δ fa(v) �
FBa(v), but the latter may not always be a necessary condition,
and in practice, we find that this is a good assumption even
when the condition does not hold.

The linearized collision operator, i.e., the part that is linear
in the perturbations (δ fa, δ fb) is

C(1)
ab = γabmb

∂

∂v
·
∫

dv′ ←→U

·
(

1

mb

∂

∂v′ −
1

ma

∂

∂v

)
(

F ′Bbδ fa + δ f ′b FBa
)

.

A. Linearization About Isotropic Maxwellians, Possibly With
Different Temperatures and Center Frames (Velocities)

The most useful approximate background state about which
to linearize is a Maxwellian. The choice of number density,
center (flow) velocity, temperature is not unique and needs to
be specified. For intraspecies/self-collisions (e.g., of species a
with a), this is

FMa(v) ≡ na

(
ma

2πTa

)d/2

exp

[

−ma (v − V a)
2

2Ta

]

(II.2)

where d is the velocity-space dimensionality and a reasonable
(and usually optimal) choice of the moment quantities is
na = N[ fa ], V a = �[ fa]/N[ fa ], Ta = ma(K [ fa]/N[ fa ] −
(2/d)V 2

a ), where

N[ f ] ≡
∫

dv f

�[ f ] ≡
∫

dv v f

K [ f ] = 2

d

∫

dv v2 f. (II.3)

The existing LOKI implementation of the collisions works
in terms of the perturbation normalized to its Maxwellian (for
that species or stream)

δ f̂a ≡ δ fa/FMa(v)

in terms of which, the linearized collision operator can be
written as

C(1)
ab = γabmb

∂

∂v
·
∫

dv′ ←→U

·
(

1

mb

∂

∂v′
− 1

ma

∂

∂v

)
[

FMa F ′Mb

(

δ f̂a + δ f̂b
′)]
.

If FMa and FMb have the same temperature and center velocity,
then

←→
U ·

(
1

mb

∂

∂v′
− 1

ma

∂

∂v

)

FMa F ′Mb = 0 (II.4)

so that C(0)
ab = 0 and

C(1)
ab = γabmb

∂

∂v

·
[

FMa

∫

dv′ F ′Mb
←→
U ·

(

1

mb

∂δ f̂b
′

∂v′
− 1

ma

∂δ f̂a

∂v

)]

(II.5)

C(1)
ab = 0 if

1

mb

∂δ f̂b

∂v
= 1

ma

∂δ f̂a

∂v
= c1 + c2v

That is, if

δ fs =
(

c0,s + ms c1 · v + 1

2
msc2v

2
)

FMs

for species index s = a, b. Note that the constant c0,s can
depend on the species, while c1 and c2 must be the same for
s = a and b.

IV. EXTENSION TO NONEQUILIBRIUM BACKGROUND

STATE

When the background is not itself in collisional equilibrium,
the above-mentioned approach would lead to additional terms.
A simple (and important) example is when there are two
streams with different center velocities and different tempera-
tures. In this case
(

1

mb

∂

∂v′
− 1

ma

∂

∂v

)

FMa F ′Mb=
(

v − V a

Ta
− v′ − V b

Tb

)

FMa F ′Mb.

This shows that some generalization of the LOKI collision
implementation is needed for interstream collisions.

We can adapt the approach used for the collision imple-
mentation in LOKI to the case of multiple streams by noting
that the effect of collisions of species a with a Maxwellian
species b is to drive the distribution function of a toward a
Maxwellian (for species of mass ma) with the temperature and
center velocity of the species-b Maxwellian

FMab(v) ≡ na

(
ma

2πTb

)3/2

exp

[

−ma(v − V b)
2

2Tb

]

.

To isolate this effect in the forward scattering (drag-diffusion)
term, note that if δ fa = αFMab , where α is the independent
of v, then

Cab(FMb, δ fa) = αCab(FMb, FMab)

= 0.

Similarly for the backreaction term, we note that if
δ fb = βFMba , where β is the independent of v, then

Cab(δ fb, FMa) ≡ βCab(FMba, FMa) = 0.

These results follow from

←→
U ·

(
1

mb

∂

∂v′
− 1

ma

∂

∂v

)

FMab F ′Mb

=←→U ·
(

1

mb

∂

∂v′
− 1

ma

∂

∂v

)

FMa F ′Mba = 0.
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Using the notation

δ f̂ab ≡ δ fa/FMab (v)

the linear part of the collision operator can be written as

C(1)
ab = γabmb

∂

∂v
·
∫

dv′ ←→U ·
(

1

mb

∂

∂v′
− 1

ma

∂

∂v

)

×[

FMab F ′Mbδ f̂ab + FMa F ′Mbaδ f̂ ′ba

]

= γab
∂

∂v
·
[

FMa

(
∫

dv′ F ′Mba
←→
U · ∂δ f̂ ′ba

∂v′

)]

−γab
mb

ma

∂

∂v
·
[

FMab

(∫

dv′ F ′Mb
←→
U

)

· ∂δ f̂ab

∂v

]

.

This generalizes (II.5). Defining the collisional diffusion tensor

←→
D ab ≡←→D ab(v) ≡ γab

mb

ma

∫

dv′F ′Mb
←→
U

and adding in the background term, we can write

C(0)
ab + C(1)

ab

= − ∂

∂v
·
[

FMab
←→
D ab (v) · ∂ f̂ab

∂v

]

+ γab
∂

∂v
·
[

FMa

(
∫

dv′ F ′Mba
←→
U · ∂δ f̂ ′ba

∂v′

)]

. (III.1)

Note that this is an exact expression for C(0)
ab + C(1)

ab . No
further approximations have been made beyond the lineariza-
tion. We will refer to the first term, which is entirely a
diffusion operator acting on f̂ab as the “forward” diffusion
term and the second integrodifferential term as the “backre-
action” term. The backreaction term enforces momentum and
energy conservation. This form is useful both in that it tells
how to implement the forward term using preexisting code
machinery, such as that in LOKI code, and because of its
clear intuitive interpretation. The forward term becomes zero
if (∂ f̂ab/∂v) = 0, i.e., if fa = αFMab for any α independent
of v. The backreaction term becomes zero if (∂δ f̂ba/∂v) = 0,
i.e., if δ fb = βFMba for any β independent of v.

V. IMPLEMENTATION CONSIDERATIONS

A. Issue Due to LOKI 2-D Cartesian Velocity Space

There is a significant issue in the LOKI implementation
concerning the mixing of 2-D and 3-D velocity spaces. In order
to have the correct asymptotic dependences of the Rosenbluth
potentials on the velocity arguments and the thermal velocities,
these must be calculated for a 3-D velocity-space distribution
function (Maxwellian in our case). However, LOKI uses a 2-D
Cartesian velocity space. The derivation of the momentum-
and energy-conservation relations for the linearized operator
requires an interchange of the orders of two velocity-space
integrations. This interchange can be made if the velocity
spaces over which these integrations are done are the same.
However, the mixture of velocity spaces necessary in the LOKI

implementation has the consequence that these changes in the
order of integration are no longer available, that is,

∫

dv

(
mav

1

2
mav

2

)

Cab( fb, fa)

= γabmb

∫

d2v

(
mav

1

2
mav

2

)

∂

∂v

·
∫

d3v′←→U ·
(

1

mb

∂

∂v′
− 1

ma

∂

∂v

)

fa f ′b

	= −
∫

dv

(
mbv

1

2
mbv

2

)

Cba( fa, fb).

Thus, the raw full (and linearized) Coulomb collision operators
no longer satisfy momentum and energy conservation with this
mixture of phase spaces. Fortunately, an appropriate modified
backreaction term can restore conservation of energy and
momentum, and there exists reduced-rank version of such an
operator.

B. Approximate Backreaction Operator

The “raw” back reaction operator of (III.1)

Cab( fb, FBa) = γab
∂

∂v
·
[

FMa

(
∫

dv′ F ′Mba
←→
U · ∂ f̂ ′ba

∂v′

)]

is an integral operator on fb of high rank. Reduced-rank
“model” backreaction operators have been developed for the
case of equilibrium backgrounds [17]–[19]. These preserve the
conservation of momentum and energy, Galilean invariance
and the H-theorem in the case of equilibrium backgrounds.
While they have so far been used mostly in explicit settings to
make the calculation of the operator computationally cheaper,
the reduction in rank may also result in a significant speedup
for implicit calculations.

We have generalized this reduced backreaction operator to
allow for nonequilibrium backgrounds. The formal expression
for this operator is

CabBR( fb, FMa)

= −mb

ma

×
[

〈va |Cba(FMa, fb)〉
1
d 〈va| · Cab(FMba, FMava)〉

· Cab(FMba, FMava)

+
〈

v2
a

∣
∣Cba(FMa , fb)

〉

〈

v2
a

∣
∣Cab

(

FMba, FMav2
a

)〉Cab
(

FMba, FMav2
a

)

]

where

〈g|h〉 ≡
∫

dv g(v)h(v).

One can think of this as a reduction of rank via representa-
tion of Cab( fb, FMa) as sum of terms ∝ Cab(FMbavn

a, FMa),
where va ≡ v−V a , and with coefficients such that momentum
and energy are conserved. These terms can then be expressed
as forward operators via use of identities such as

Cab

([

v

v2

]

FMba, FMa

)

= −ma

mb
Cab

(

FMba, FMa

[

v

v2

])

.
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It can be shown directly that this form of the backreac-
tion operator enforces momentum and energy conservation
even in a case, such as ours, where the underlying operator
Cab( fb, fa) would not.

C. Choices of Moments to Use for Maxwellians

As stated earlier, we will choose each of the background
distributions, used in the calculation of the Rosenbluth poten-
tials, to be a Maxwellian as given by (II.2). The primary
choice expected to be used for the moments is as given in
(II.3). That is, given f (or fB and δ f , so that f = fB + δ f )
before collisions, take moments as specified by (II.3) of f →
N[ f ], �[ f ], K [ f ], base the Maxwellian on these, and choose
δ f = f − FM. Then, δ f has zero density, momentum, and
energy before collision. Collisions may impart flow or energy
to δ f . The backreaction terms then enforce conservation of
momentum and energy between species within perturbed parts
separately. On next step (or RK stage), this projection removes
all momentum and energy from δ f and puts it into FM.

A second option, which is useful for verification of the
backreaction terms with nonequilibrium background, is to use
the moments of fB. That is, use N[ fB], �[ fB], K [ fB], and
base the Maxwellian on these. The new precollision perturbed
distribution function is

δ f̂ = δ f + fB − FM.

δ f̂ can have nonzero density, momentum, and energy before
collision. This projection puts the nonmaxwellian part of fB
into δ f̂ . Then, apply collisions separately to FM resulting
in the new fB, and to δ f̂ (including backreaction term).
The backreaction terms enforce conservation of momentum
and energy between species within background and perturbed
parts separately. An additional suboption, again useful for
verification, is δ f̂ = δ f , i.e., neglect the kinetic piece fB−FM
caused by background collisions in δ f̂ .

VI. TESTS OF THE COLLISION OPERATOR

Demonstrations of momentum and energy conservation test
the backreaction terms, including density and mass factors.
The absence of evolution of two shifted-Maxwellian streams
in any frame is a key demonstration of Galilean invariance.
The entropy evolution can be tracked to show that it increases,
and so does not violate the H-theorems satisfied by the full
nonlinear operator and by the linearized operator in the case
where the backgrounds are in equilibrium. In the general case,
we have not obtained an H-theorem, so there is a possibility
that the entropy (either the “full” entropy or with terms
cubic and higher in δ f neglected) might decrease. However,
any decrease should not persist in undriven situations where
collisional equilibration is expected.

We would like to verify that the collision operator gives
correct results for relaxation rates, for example, those for
relaxation of modest flow differences and modest temperature
differences. These rates are valuable tests of the forward terms.
For the “physical” case of 3-D velocity spaces, results for these
rates are given in [22] and [23]. For test particle species a

Fig. 1. Evolution of (the logarithm of) the total velocity-space density for a
two-stream collision test case. The first frame shows the initial condition and
the second frame shows a late time state.

colliding with Maxwellian b, the 3-D relaxation rate for both
temperature and momentum is

νab = 4
√

2π

3
nbq2

a q2
b

(√
μab

ma

) (
T

mb

)−3/2

. (V.1)

A. Verification Issue Due to Mixed 2-D and 3-D Velocity
Spaces

The present operator is targeted to LOKI which uses a
2-D Cartesian velocity space. This can be thought of as the
vz = 0 subspace of the “physical” 3-D (vx , vy, vz) space.
The resulting 2-D moment integrals taken to get the rates
are fundamentally different from those in 3-D. Thus, one
cannot verify relaxation rates by comparison with published
3-D results such as those that in [22] and [23]. One would
need to work out analogous 2-D rates (and with the 3-
D velocity space-based Rosenbluth potentials used in the
implementation). An independent calculation of such rates is
presently unavailable. Thus, the main available test is that such
rates are “reasonable,” that is have values similar to those for
the 3-D–3-D case. Differences in physics for this 2-D operator
and the “full” 3-D operator are also expected to be present for
kinetic effects.

B. Multiple Feature Test Case

We have implemented the above operator for the 2-D
Cartesian V space in a testbed (MATLAB) code, extending a
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Fig. 2. Evolution of stream (blue and red) and total (black) momenta and
kinetic (thermal + flow) energies for the two-stream collision test case. There
are dashed curves, which are those calculated for the background Maxwellians
only, and solid curves for the total distribution functions.

previous implementation for single like-species case and have
carried out verification cases run for various setups. A general
setup that simultaneously tests all of the aspects of the operator
other than the quantitative relaxation rates consists of two ion
streams with different masses, densities, flow velocities (with
no particular centering about the velocity-space origin), and
temperatures. Demonstration of conservation of momentum
and energy for such a case simultaneously checks mass, and
density factors, and Galilean invariance.

Fig. 1 shows the evolution of the total velocity-space density
for such a two-stream collision test case. Only interstream
collisions are included. The distribution function is seen to
evolve toward a Maxwellian with no relative flow between
the streams, and with a center not at the origin, consistent
with momentum conservation.

Fig. 2 shows the evolution of individual stream (blue and
red) and total (black) momenta and kinetic (thermal + flow)
energies for the two-stream collision test case. There are
dashed curves, which are those calculated for the background
Maxwellians only, and solid curves for the total distribution
functions. Because of the particular choice (first option) of
the moments used for the Maxwellian (i.e., those of the total
distribution function, the dashed curves are indistinguishable
from the solid ones and are, therefore, “invisible” in these
plots. These plots show damping rates qualitatively consistent
with (V.1) and excellent conservation of the total momentum
and energy.

Fig. 3. Evolution of entropy components for the two-stream collision test
case. Shown are stream-component (blue and red) and total (black) entropies
based on the full ( f ) distribution functions, as well as the stream-component
(cyan and magenta) and total (green) entropies based on the Maxwellian
background (FM ) distribution functions.

Fig. 3 shows the evolution of stream (blue and red) and total
(black) entropy components based on the full ( f ) distribution
functions, for the two-stream collision test case, as well as the
stream (cyan and magenta) and total (green) entropy compo-
nents, based on the Maxwellian background (FM ) distribution
functions. The key result from this figure is that the total
entropy (black curve) is monotonically increasing, consistent
with the H-theorem, even if strictly speaking these do not
apply to the present operator.

VII. CONCLUSION

We have developed a Coulomb collision operator suitable
for the simulation of multiple interpenetrating plasma streams
in an Eulerian kinetic code framework. This operator is based
on previously developed linearized operators but represents a
significant extension due to the nonequilibrium background
state about the linearization is done and due to the necessarily
disparate (2-D and 3-D) velocity spaces used in the particular
(LOKI) code representation and in underlying calculation of
the drag and diffusion coefficients (Rosenbluth potentials).

This operator has a simplifying aspect in that it is based on
the calculation of the drag and diffusion coefficients using a
Maxwellian approximation to the distribution functions. The
reduced backreaction operator developed here has the fortunate
property that it fixes nonconservation issues that result from
the disparate 2-D–3-D velocity spaces used.

This operator has been implemented in a testbed (MAT-
LAB) code, and key verification tests have been carried out
and presented. The operator, as implemented shows excellent
(essentially perfect) momentum and energy conservation and
monotonic entropy increase for the test problem presented,
which is a quite general test that combines several differences
between the interacting plasma streams.

It would be desirable to establish a clean H-theorem for
this operator. While we have been able to obtain various illus-
trative forms of the entropy evolution equation, such a clean
H-theorem has not been derived. However, the monitoring of
the entropy evolution in the test cases that we have carried
out does not show any entropy decrease, and such entropy
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monitoring can be carried out in actual applications to gain
further understanding and to watch for possible problems in
this regard.

We believe that his approach will be useful in other settings,
e.g., in 3-D velocity space with axisymmetry (using cylindrical
coordinates in velocity space) or, when the computational
capability eventually becomes available to make it useful,
in full 3-D velocity-space simulations.
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