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ABSTRACT

The interpenetration of counterstreaming plasmas is an important phenomenon in several application
areas, such as astrophysical flows, design of controlled fusion devices, and laser-induced plasma experi-
ments. Multispecies “single-fluid” codes are unable to model this phenomenon due to the single velocity
representation for all the species/fluids. Kinetic codes, though capable of modeling interpenetration, are
computationally prohibitive for at-scale simulations. In this paper, we propose a multifluid model that
solves the fluid equations for each ion fluid or stream. This allows distinct flows that interact with each
other through electrostatic and collisional forces. We introduce and describe our code, EUCLID, that uses
a conservative finite-difference formulation to discretize the governing equations in space. The 5th-order
Monotonicity-Preserving WENO scheme is used for the upwind approximation of the hyperbolic flux,
and the explicit 4th-order Runge-Kutta scheme is used for time integration. The code is verified for sev-
eral benchmark cases and manufactured solutions. We simulate one- and two-dimensional interactions
of counterstreaming plasmas in vacuum as well as in the presence of gas fill, where the setups are rep-

Multifluid plasma
Conservative finite-difference method
Laser-induced plasmas

resentative of laser-induced plasma experiments.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Counterstreaming plasmas often exhibit interpenetration, where
they flow through each other, and localized regions may exist
where plasma species or populations inhabiting the same physi-
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cal space may have different velocities. This dynamics plays a sig-
nificant role in applications such as astrophysical flows, controlled
fusion devices [1,2], and experiments involving the interaction
of laser-induced plasma streams [3-7]. Multispecies, single-fluid
codes [8] fail to capture the interpenetration; the assumption of
a single velocity field results in counterstreaming plasmas stagnat-
ing and causing density pile-ups. Alternatively, collisional, kinetic
codes that solve the Boltzmann equations for each species [9-
13] are able to represent this phenomenon; however, they are
computationally expensive due to their high-dimensionality, and
therefore, impractical for experimental-scale simulations. An effort
has also been made to derive species diffusion models [14,15] for
multispecies, single-fluid codes. These are empirical in nature, and
the introduction of a diffusion term results in a stiff system of par-
tial differential equations (PDEs). The drawbacks of these current
approaches motivate the use of a multifluid model.

The multifluid equations are derived by taking the velocity-
space moments of the Boltzmann equation for each species [16].
This results in a distinct set of fluid equations for each stream
or fluid that is solved along with the Maxwell’'s equations or
some simplification thereof. Over the last few decades, multifluid
models have been successfully applied to several plasma appli-
cations. In the context of magnetically-confined fusion device
simulations, these methods have been applied to #-pinch [17] and


https://doi.org/10.1016/j.compfluid.2019.04.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.04.012&domain=pdf
mailto:ghosh5@llnl.gov
https://doi.org/10.1016/j.compfluid.2019.04.012

D. Ghosh, T.D. Chapman and R.L. Berger et al./Computers and Fluids 186 (2019) 38-57 39

Plasma Streams lqci Dot T ser

7K Beams

Carbon
Discs

Fig. 1. Illustration of the laser-induced plasma interactions in HEDP experiments
with counterstreaming plasmas ablating off the carbon discs.

Z-pinch [18,19] simulations. The multifluid approach has been
applied to device edge plasma simulations where the modeling
of impurities introduced from the device wall is essential [20-
25]. In astrophysics, the multifluid approach has been used to
study the interactions of the solar wind with the magneto-
sphere [26] and the local interstellar cloud [22,27], collisionless re-
connection [18,19,28-30], and the interactions of weakly/partially-
ionized plasmas in the heliosphere and the atmosphere [23,31,32].
Other applications include plasma glow discharge [33,34], ICF
capsule detonation [35,36], and plasma-enhanced combustion [37].
A majority of these multifluid approaches use a predefined
number of fluids, for example, two-fluid formulations with one
ion species and one electron [18,19,25,28,36,38-40], two-fluid
formulations with one ion and one neutral species [22,23], and
three- and four-fluid formulations with one ion species, one
electron species, and neutral species including dust [22,29,32].
Formulations with an arbitrary number of species have also been
proposed [21,27,34,41].

This paper focuses on the interactions of laser-induced coun-
terstreaming plasmas in high energy density physics (HEDP) exper-
iments [3-7]. Fig. 1 illustrates a typical setup of such experiments.
Two foils/discs made of carbon or a carbon-based compound are
irradiated with high-energy laser beams, and the interaction of the
counterstreaming plasmas ablating off them is studied. Multifluid
models for these applications were proposed [42-44] that solved
the fluid equations for two ion species in a one-dimensional
domain. A kinetic model was incorporated [42] to represent the
friction and heating resulting from plasma instabilities. Overall,
these studies showed that a multifluid model was essential to
model the interpenetration, and a good agreement with kinetic
simulations was observed [44]. In this paper, we present an EU-
lerian Code for pLasma Interpenetration Dynamics (EUCLID) that
extends these previous efforts in developing and implementing
a computationally efficient multifluid model for the applications
described above. EUCLID solves an electrostatic multispecies, mul-
tifluid model that comprises the inviscid Euler equations for each
ion fluid or stream, where the number of ion fluids/streams is
arbitrary. The fluids interact with each other through the electro-
static forces as well as collisional friction and thermal equilibration
terms [44]. We note that in this formulation, each grid cell has

some amount of all fluids. That is to say that there are no inter-
faces separating different fluids. Furthermore, a given material or
plasma species (such as hydrogen or carbon) may be represented
by more than one fluid; for example, in 1, the carbon ablated from
each disk may be represented by its own distinct fluid. The Debye
length in our applications is much smaller than the characteristic
length scales (by a factor of the order of 10°-108), and therefore,
we use a reduced model for the electrons that simplifies the elec-
trostatic force term. The nondimensionalized governing equations
are discretized in a Cartesian domain with the conservative finite-
difference formulation [45,46]. The basic data structures in EUCLID
are implemented using Chombo [47], a parallel, block-structured
adaptive mesh refinement (AMR) library for PDEs, and therefore,
EUCLID is multidimensional and supports distributed-memory
parallelism.

The primary numerical challenge in our applications stems from
flows involving the presence of a fluid that exists only in a local-
ized part of the domain; it doesn’t exist elsewhere. Since the fluid
density cannot be numerically zero anywhere in the domain (even
if other fluids with nonzero densities exist in the same region), we
specify the species density corresponding to “numerical vacuum”
as 10-1, This results in very steep gradients, where the species
density and pressure may transition from O(1) to 0(10—14) within
a few grid cells. Therefore, we use the 5th-order weighted essen-
tially nonoscillatory (WENO) scheme [48] and the characteristic-
based reconstruction procedure, which has been shown to be more
robust than reconstructing the conserved or the primitive vari-
ables for supersonic flows involving strong shocks and gradients.
In addition, because the WENO scheme may result in O(€) oscilla-
tions, where € is a WENO parameter that is typically set to 1075,
we implement the monotonicity-preserving (MP) limits [49] to
avoid any numerical oscillations. The equations are evolved
in time using the four-stage, 4th-order explicit Runge-Kutta
(RK4) method.

The primary contributions of this paper are a detailed descrip-
tion of the multifluid model, the assumptions and reformulations
that are needed for a robust numerical solution in our application
context, and the ingredients of our numerical algorithm. The
outline of the paper is as follows. The multifluid model that
EUCLID solves is described in Sections 2, and 3 describes the
numerical method. Section 4 outlines the code verification using
exact solutions, manufactured solutions, and benchmark cases,
and the simulation of flows representative of the application
areas described above are shown in Section 5. Conclusions are
summarized in Section 6.

2. Governing equations

The inviscid Euler equations for each ion fluid are obtained
by taking the moments of the collisionless Boltzmann equation
and neglecting viscosity and heat conduction [16], and can be ex-
pressed in their nondimensional form as:

d
%"'V‘(paua)zo, (1a)
Wpalle | Py) = — ZuyngV
9t + V(pala @ Uy + Py) = — ZyNg ¢+ZR(!,}‘}+RO(,D
B#a
(1b)
0Ey
W"'v A(&a +Py)ug} =—-Zonouy - V¢+Z (Rot,ﬁ Uy +Qoz.ﬂ)
B

+ Ry - Uy + Que, (1c)

where ¢ =1, --- Ny is the fluid index, ny is the number of fluids,

Pa is the density, uy is the velocity vector, Py is the pressure, Z, is
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the ionization number, ¢ is the electrostatic potential, ny = po /Mgy
is the number density, m,, is the atomic mass, and
Py
Vo —1

is the internal energy. The ideal gas law Py = n,Ty is assumed,
and the specific heat ratio is specified as y, =5/3 for all flu-
ids. On the right-hand side (RHS) of (1), the terms —Zyn,V¢
and —Zynyu, - V¢ represent the electrostatic force and the work
done by it, respectively, and the remaining terms represent the
collisional interactions between the ion fluids and electrons, as
described below. We reiterate here that (1) is solved for each
“fluid” or distinct population of ion species; a single species can
be partitioned into multiple populations and modeled as separate
fluids.

Friction and thermal equilibration terms. The frictional force on
fluid o due to fluid B is proportional to the velocity of g relative
to that of «, and this can be expressed as

1
Ea = + jpaua c Uy (2)

Ry = MaNgVe g (g — Ug) = —Rg . (3)
and the total heating of fluid « due to fluid g is

Qup = Q05 + Qs (4)
where

QUG =My gNa vy p(Ue —ug) - (ug —up) (5)

is the frictional heating between two fluids that is proportional to
the square of the relative velocity, and

Y
eq _ a.p _ _n%
QY = 3mang T + iy (T - To) = -Q3, (6)
is the thermal equilibration due to a temperature difference be-
tween the two fluids. The collisional coefficient v, g is given
by [44]

N 4mZ§Z§e4nﬁAaﬁ
of = 3 mama_ﬁ
3
To  Tg | 7 [ npesx
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where m, g = mamﬂ/(ma +mﬁ). Similarly, the electron-ion fric-
tion and thermal equilibration terms are

Rue = —Req = —MeMNeVe o (Uy — We), (8a)
%
Que = e?le =- E,?x = —3meneﬁ(ﬂx -T), (8b)

where the electron-ion friction heating Q¢ has been ignored.
Since me « Mg =>My,e ~ M, we have

_ 4x/27 Zée‘l noeri (nrefxref>

Ve,a
3 m3 (Te/me)% Trzef

(9)

as the simplified form for the electron-ion collisional coeffi-
cient [44]. In the simulations reported in this paper, the ion-ion
log-lambda is Aaﬁ =5 and the electron-ion log-lambda is Ae¢q =

10, unless otherwise mentioned, and r = [2/(97)]'/ is a constant.

Eq. (1) is expressed in terms of nondimensional variables, and
these can be multiplied with the corresponding reference quantity
to obtain their physical values. The primary reference quantities
and their CGS units are mass M (g), number density n.s (cm=3),
length x..r (cm), temperature T, (ergs), and charge e (elementary
charge in statcoulomb). The derived reference quantities and their
units are:

Upef = v Tref/mref (Cl‘l’l/S),
Pref = Myefllef (g/cm3),

bref = Xref/Uref = xref\/ mref/Tref (S)’ (10)
Pref = nrefTref (Ba),
¢ref = Tref/e (V)

Electron Model. The fluid equations for electrons can be ex-
pressed by removing the Ry and Qu. terms in (1) and replac-
ing the subscript o with the subscript e in the remaining terms,
and these equations can be solved along with the ion fluid equa-
tions to resolve the electron dynamics, where the Poisson’s equa-
tion is solved for the electrostatic potential. However, to avoid the
stiff time scales arising from the electron thermal velocity (for ex-
ample, the electron plasma frequency), we make the following as-
sumptions:

dpeul
B V(o @b > 0 VA=V + Y Rea.  (113)
o
P, = n,T, (T, constant), (11b)
1
ne:ZnaZa, u, = n—ZZanaua. (11c)
o e o

Eq. (11a) and (11b) assume that the electrons are inertialess
and isothermal, respectively. Eq. (11c) assumes that the plasma
is quasineutral with zero currents, which is a consequence of the
Debye lengths being much smaller than the length scales of inter-
est in our applications. Thus, we do not resolve electron dynamics,
and our governing equations are deliberately limited to applica-
tions without significant charge separation between electrons and
ions. Since the electrons are assumed to be isothermal, they act
as “infinite” sources or sinks for the ion energy; consequently,
the model is not energy-conservative, although this can easily be
changed. We will explore higher-fidelity electron models in future
publications. The electric field can be obtained by expressing the
electron pressure in (11a) as (11b) and rearranging:

T. 1
=—Vne— — .
Ve = -Vie— - ;Re.a (12)
Substituting (12) in (1) and adding V(ZyTeny) and V - (Zy Tenguy)

on both sides of (1b) and (1c), respectively, the equations for the
ion fluids are:

% +V - (pale) =0, (13a)
9Palty + V(pallg @ Uy + P = ZaTe [neVny —ny V]
ot ne
ZaNy
+— > Reg
e
B
+Raet+ Y Ry, (13b)
pra
0&y Zy T,
T V {(Ex +PHuy} = . eV (Ugy) — (UgNg ) V]
e
ZoNy
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where

P: =Py, + ZyTong (14)
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is the augmented pressure, and ZyTen,, is the “electron pressure”.
The main motivation behind including the electron pressure on
the left-hand-side (LHS) of (13) is to allow its inclusion in the
upwinding of the spatial discretization operator described in the
next section. The electrostatic force acting through this term is
advective in nature, and therefore it should be included along with
the hydrodynamic pressure P, and the convective velocity uy in
the calculation of the wavespeeds.

Thus, to summarize, (13) with o =1,---,n; represents the
complete system of equations solved by EUCLID. We note that (13)
reduces to the inviscid, compressible Euler equations governing
neutral gas dynamics [50] for ny =1,Zy = 0.

3. Numerical method

Eq. (13) constitutes a system of N hyperbolic PDEs with source
terms that can be expressed as

U+ V -FU) =S(U), (15)
where
U= [U], e, Ua, c Unf]Tv
FU) =[FU), ., Fa), . Fu(Us)].
SWU) =[S1U), . Su(U), ---. S, W],

are the state vector, flux tensor, and source vector for all the flu-
ids with N = 5n; components (5 components for each set of three-
dimensional fluid equations), and

T
Up(Uo) = [Po:  Puble, &) (16a)

T
Fo(Uo) = [Palle,  Pallaly + P, (Ex + Pi)U (16b)

are the state vector and flux tensor for fluid «, respectively, and

Sot (U) — S(exlec (U) + Scoll (U) + Scoll (U),

o, il o,ei
is its source term comprising the electrostatic and collisional
terms:

7 (U)
_ Zole [0, NeVig — g Vie, NV - (Nglly) — MUy - Vne]T,
e
(17a)
SPHU) =Y myngvg g
B#a
0
« | (15 —ua) , (17b)
My g (Up—Ug 3(Tg—Ty
(lllg — ua) Uy + ﬂ(mi ) r(n::—mﬁ)

Sgfleli (U) = mene
0
Ve (Ue —Ug) + 228 37 v, 5 (ug — 1)

{Veu (Ue —uy) + Z(;IT:“ Zf} Veﬂ(uﬁ - lle)} Uy +

3Vea (Te=Tor)
My +Me

(17¢)

We note that the flux tensor of fluid o depends only on the
state vector of fluid o, while the source term for each fluid is a
function of the other fluids as well since it contains the inter-fluid
interactions. In subsequent discussions, we refer to the following
equation:

U+ V-F(U) = S(U), S°U) = [SICU)|o =1, ,nf]"
(18)

as the “collisionless” multifluid equations, where the collisional
source terms have been excluded.

Spatial discretization. Eq. (15) is discretized on a three-
dimensional Cartesian grid, with i={i, j, k} as the grid index, and
the conservative finite-difference formulation [45,46] can be writ-
ten at a grid point as:

F(d) F(d)
dy; & fi+%ed - fi—%ed
@~ LU= ; Ax

+S;, (19)

where U; and S;=S(U;) are the cell-centered values of the state
and source vectors, d is the dimension index, and e; is the unit
vector along d (its d-th component is 1 and the other components
are 0). The grid spacing, Ax, is taken as uniform in all dimensions
in our implementation. The high-order approximation to the flux
primitive, f@, is

fo  _ S( £

i+ley i+key

+O(AXP),  (20)

_ _h@D
wp <k< WR}> = hi+%ed
where p is the order of the discretization scheme, S is the finite-
difference reconstruction operator, w; and wy define its stencil
width, and h(@ is the flux primitive satisfying:

O (x) = fOUX)) = i / xﬁ; h@ (£)dé (21)

and f9(U)=F(U)-ey is the d-th component of the flux tensor. The

numerical flux approximation ?i(i)led is computed at the cell inter-
2
faces i+ %ed independently along each dimension; the following
discussion describes this for one spatial dimension.
The vector flux approximation is reconstructed at the cell inter-
face using a characteristic-based approach [45,46,48], where it is
computed as:

fire = [R(d) (Um ed)]%%ed, (22)

where R@ is the matrix whose columns are the right-

eigenvectors of the flux Jacobian evaluated at the Roe-averaged

state Uffele [50]. The Roe-fixed scheme [48] is used to compute
2%d

the components of the characteristic flux vector, i1 ey at the cell
2

interfaces:

(k).L ey (d) 4 (d) (d)
(pi+%ed if )\k,i > )\k,i+%ed’ )\'l<.i+ed >0
k (k).R ieq (d) o (d) (d)

(pi(+)%ea - (pi+%ed if A )\k,i+%ed’ )‘k.i+ed <0 i
1| w.L KR 5@ ®R (kL :
7[(pi+%ed+¢i+%ed )“k,max<Qi+%ed Qﬂ%ed)] otherwise

(23)
— | o® -1....
(pi+%ed_|:§0i+%ed k=1, ’N:I’

(d)
where )Lk’ {iire,

along dimension d evaluated at the cell-centered solution U{

} are the k-th eigenvalue (characteristic wavespeed)

iite;}
)Ll(cdil le is the k-th eigenvalue evaluated at the Roe-averaged state
drles
Uffe]e . The left- and right-biased characteristic flux and solution
2%

components at the cell interfaces are computed as:

(k),L (k) (k) k) (k) (k)
o5t = MPWENOS (¢, o) o 0, 00, ). 24a)
(ﬂ(k).R — MPWENO5 (w(k) (p(k) (p(k) §0(k) (p(k) ) (24b)
itley i+3e,’ Tit+2e,’ Titey? Ui Ti-ey )?
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(l.L _ (k) (k) k) k) (k)

QH%ed = MPWENO5 (Qi—Zed’ Qi—ed’ Qi ’ Qi+ed’ Qi+2ed>’ (24C)
(k).R (k) (k) (k) k) k)

Qi+%ed = MPWENO5 <Qi+3ed’ Qi+2ed’ Qi+ed’ Qi ’ Qi—q)’ (24d)

where (pé’?, QE? represent the k-th component of the cell-centered

characteristic flux and solution vectors @), o) respectively,
and MPWENO5(-) is the 5th-order monotonicity-preserving WENO
scheme [48,49] summarized in Appendix A. The cell-centered char-
acteristic flux and solution vectors are calculated as

0 (YR @ (YR
o= [L( )<Uife%ed>:|f(‘)’ Q.= [L( )<Uif§ed)]u(->v (25)
where L(d)<U?fele) is the matrix whose rows are the left-
2%

eigenvectors of the flux Jacobian evaluated at the Roe-averaged
state URo¢
i+5ey
In the above method, the Roe-averaged state is computed inde-
pendently for each fluid at the cell interfaces, i.e., the state vectors
of each fluid Uy is extracted from U, and the Roe-averaged state
is calculated. The complete eigenstructure (A9, L@, R@); de(x, y,
z}) for the multifluid system (15) required by the characteristic-
based procedure outlined above is provided in Appendix B. We
reiterate here that the contribution of the electron pressure,
included on the LHS of (13), is incorporated into the derivation
of the characteristic wavespeeds, and consequently, the upwind
discretization. Thus, to summarize, the following are the steps in
the discretization of the hyperbolic flux term in (15) along each
dimension d:

1. At each cell interface i+ %ed, compute the Roe-averaged
state UR¢  [50], its eigenvalues A(@ (U!‘Oe1 ) and its left
i+5e4 i ’

2

and right eigenvector matrices L@ (U!‘Oe1 ),R<d> (U!‘Oe1 )
it+jey it+Jey

using the expressions given in Appendix B.

2. Compute the characteristic flux and solution vectors @, o(.y
at all the grid points needed by the MPWENO5 operator
as (25).

3. Reconstruct the left- and right-biased characteristic flux and
solution vectors at the cell interface i+ %ed as given by (24)
using the MPWENO5 scheme in Appendix A.

4. Apply the Roe-fixed upwinding (23) procedure to compute
the upwind characteristic flux vector at the interface ¢, leg

and then compute the conserved flux vector using (22).

The source term in (15) comprises the electrostatic and colli-
sional source terms, as given in (17). While the collisional source
term does not contain any derivatives, the electrostatic source
term (17a) contains gradient and divergence terms. These are com-
puted using the fourth-order central difference operator along each
dimension, which can be expressed for an arbitrary grid variable ¢
as:

oy | _ 1

Ix@D = m(l//i—hd - Swi—ed + 81,0i+ed - I,0i-¢—2ed) + O(AX4)-
i

(26)

This differencing is applied component-wise for vector quantities.

Time integration. Eq. (19) is a ordinary differential equation
(ODE) in time, and it is integrated using the fourth-order, four-
stage, explicit Runge-Kutta method. Since the time integration
method is explicit, the time step At is restricted by the CFL cri-
terion, where the CFL number is defined as

maxg q (|Ug| + C5)

= At
AX ’

(27)

where Q is the total domain, « is the fluid index, and c} =
/ VaPi/pe is the “augmented” speed of sound that is computed
from the augmented pressure in (14). Linear stability typically re-
quires o <1, although this is specific to the spatial discretization
method, and it is not a sufficient condition for stability for nonlin-
ear simulations. Eq. (27) does not take into account the time scales
of the collisional source terms, (17b) and (17c); consequently, a
lower time step that resolves the collisional time scales is needed,
and this is reported in the simulations presented in subsequent
sections.

4. Verification

EUCLID is verified through several benchmark test problems.
Since (13) reduces to the inviscid Euler equations for gasdy-
namics for Zy = 0,ny = 1), standard compressible flow test cases
are solved and the results verified. Since few benchmark prob-
lems exist for our specific applications, we verify our code for
charged fluids using the following approach. An analytical, easily-
differentiable form is assumed for the solution U, and (19) is mod-
ified as
T = LU) ~ LU, (28)
where Lex(U;) is the exact form of L(U;) obtained by analytically
evaluating its constituent terms. We then verify that the numerical
error in computing L(U), quantified as

&= ”L(U) - Lex(U)”s (29)

converges to zero at the theoretical order of the spatial discretiza-
tion scheme, where ||(-)|| is an appropriate norm over the entire
grid. In all the cases described in this section, we take the discrete
2-norm |[|(-)||». The analytical solutions used here are the ones that
could be derived by Mathematica [51] in a reasonable time while
testing as many terms in the governing equations as possible. EU-
CLID is implemented for the three-dimensional equations; lower-
dimensional flows are simulated by specifying a small number of
grid points (the minimum required by the finite-difference stencil)
and periodic boundary conditions along the inactive dimension(s).
These tests are repeated along each dimension to verify the code;
for example, a two-dimensional test is repeated in the x-y, y-z,
and x-z planes.

4.1. Collisionless multifluid equations

The collisionless multifluid equations are given by (18), and the
verification tests in this section demonstrate the accuracy, conver-
gence, and nonoscillatory properties of our algorithm.

Accuracy and convergence. Our implementation is verified for a
single charged fluid (ny = 1) by generating a two-dimensional so-
lution that results in all terms in (18) being nonzero (except those
along the third dimension). The governing Eqs. (13), contain terms
that are either uni-dimensional (for example, pu, pv, pu?, etc.) or
bi-dimensional (for example, puv, puw, pvw, etc.), and therefore, a
two-dimensional test applied in all three planes (x-y, y-z, and x-z)
is sufficient. Since the number of fluids is 1, the fluid index sub-
script is omitted. The species is set to helium (m =4,Z =2), and
the solution is prescribed as

pxy)=1+ 1 cos (2mx) cos (2my),

5 (30a)
u(x,y) = % cos (27 x) cos (47y), (30b)
v(X,y) = %cos (4rrx) cos 2my), (30c)
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this case, and the flux divergence term, discretized by the 5th-order MPWENO scheme, is dominant.

w(x,y) =0, (30d)

P(x,y) =2+ % cos (2 x) cos (2my). (30e)

The electron temperature T, is 1, and the specific heat ratio
is taken as y =5/3. The analytical term Lex(U;) is obtained us-
ing Mathematica. A periodic, two-dimensional domain with unit
length along x and y is considered. Fig. 2(a) shows the error as
a function of the grid spacing Ax for the number of grid points
varying from 16 x 16 to 128 x 128; the number of grid points is
the same along x and y for all the cases. The time step is specified
as At =0.001. The order convergence is observed to be greater
than 4; the solutions are almost 5th order, except between the two
finest grids (64 x 64 and 128 x 128). Examining the electrostatic
source term, (17a), we note that n, =Y Zyny = Zn for ng=1, and
thus it reduces to

sy =[0, 0. ZLnV.u]. (31)

Thus, the error is dominated by the flux-divergence term V .F
n (18), which is discretized using the 5th-order MPWENO scheme
described in the previous section.

We now consider a two-fluid case that verifies the imple-
mentation of terms that involve multiple fluids. Smooth, two-
dimensional equilibria for the two-fluid equations (ny = 2) are de-
rived as follows. The two fluids are two distinct species, and the
initial number densities are specified functions while the initial ve-
locities are zero for both the fluids:

The pressures Py 5 (x,y,t =0) = P1(,02) (x,y) are derived using Mathe-

matica such that they satisfy the equilibrium conditions:

K(P” +2.Tne) | 7, T, | n 0l —nl 8n{®

5 2,
(P +ZeTnd) | 0 | n®3ynl? —nl 3yl

, O

(33)

where néo) :Zm%o) +Zzn§0). Derivation of the pressure functions
involves solving the PDE given by (33), and the constants of
integration are taken such that the resulting functions have no
nonpositive values. We consider two cases, where the species are
helium (Z; =2, m; = 4) and carbon (Z; = 6, m, = 12), the domain
is x, y€[.0, 1). with periodic boundary conditions, and the number
densities are

1+ cos (2mx) cos (4w Case 1

1 (x,y) = {1 (rex)cos (4my) - Case 1 (342)
1
= Case 1

nxy) =11% (34b)

5+ 1 cos (4rrx)cos (2my) Case 2

2 4

We were unable to obtain real-valued pressure functions for a
case where the number densities for both the fluids varied spa-
tially, and therefore, these two cases, where one of the number
densities is constant, are necessary to verify our implementation.
The electron temperature T, and specific heat ratios for both flu-
ids are 1 and 5/3, respectively. The pressure functions that sat-
isfy (33) are

©) —2cos (2mx) cos (4my) + 3log[5 + 2 cos (2mwx) cos (4my)] Case 1
P (x.y) = : (35a)
—2[-5+1log {10 + 3 cos (4mrx) cos (27y)}] Case 2
10 —31log[5 + 2 cos (27 x) cos (47y)] Case 1
P¥(x.y) =11 . (35b)
j[_3 cos (4mrx) cos (2my)] + 21og[10 + 3 cos (4w x) cos (2wy)] Case 2

nax.y.t=0)=n"xy). u =0,

(32)

Since these are equilibrium cases, Lex(U;)=0, and the error can
be measured by advancing (19) by one time step with the forward
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Fig. 3. Solution of the electrostatic shock tube problem: The solutions for the charged species (hydrogen, helium, and beryllium) agree well with the neutral gas solution.

Euler scheme:

1
e =Lz = NIIU“l = U". (36)

Fig. 2(b) shows the error as a function of the grid spacing Ax,
starting from a grid with 16 x 16 points to a grid with 256 x 256
points. The time step is specified as At = 0.00001. Since the elec-
trostatic source term (17a) has the same magnitude as the flux di-
vergence term V -F, 4th-order convergence is observed.

The two tests discussed above are sufficient to verify our dis-
cretization of the multifluid Egs. (13), except the collisional terms,
and demonstrate the high-order convergence of the spatial dis-
cretization schemes. The single-fluid test verifies the discretization
of the flux term, while the two-fluid cases verify the discretization
of the electrostatic source term. These tests are repeated in the y-
z and x-z planes to complete the verification of all non-collisional
terms in (13).

Nonoscillatory behavior. The Sod shock tube test [50,52] is a one-
dimensional Riemann problem that is used to test the nonoscilla-
tory behavior of compressible gasdynamics codes. The initial so-
lution is a discontinuity that has a high-density, high-pressure
fluid on one side and a low-density, low-pressure fluid on the
other side. As the simulation progresses, the initial discontinu-
ity decomposes into a rarefaction wave, a contact discontinuity,
and a shock wave. While the smooth problems discussed above
test the accuracy and convergence properties of the spatial dis-
cretization, the Riemann problem tests the ability of an upwind
discretization scheme to resolve the characteristic wavespeeds cor-
rectly and yield nonoscillatory solutions. In this section, we con-
sider an electrostatic shock tube problem by noting that the LHS
of (13) is identical to the compressible Euler equations for neutral
gases [50], if the hydrodynamic pressure in the latter is replaced by
the augmented pressure (sum of the hydrodynamic pressure and
electron pressure). Eq. (18) is thus solved with a zero RHS on
a one-dimensional domain x€[0, 1] with inviscid wall boundary
conditions at both ends. The number of fluids is ny =1, and the
initial solution is specified as

x<05 u=o. P:P*—@p_

" {1.1}
{’O’P}:{{OJZS,OJ} x> 05 m

(37)

We consider four cases, each with a different species:

Neutral gas Z=0,meR"

Hydrogen Z=1,m=1 (38)
Helium Z=2,m=4"

Beryllium Z=4m=9

and the electron temperature T, and the specific heat ratio y are
set to 0.01 and 5/3, respectively. Fig. 3 shows the density and pres-
sure at t = 0.15 for solutions obtained on a grid with 256 points.
The CFL number for all the simulations are set to o = 0.9. The so-
lutions obtained with the charged species (hydrogen, helium, and
beryllium) agree well with the neutral gas solution, as expected.
This case demonstrates that the characteristic-based MPWENO5
spatial discretization described in the previous section is able to
yield nonoscillatory solutions for flows with strong discontinuities.

4.2. Collisional terms

We now verify our implementation of the collisional source
terms by comparing them with previous results in the literature.
Since these terms do not involve any spatial gradients, “zero-
dimensional” cases with uniform flow variables are sufficient for
their verification. We consider two setups that are identical to
those solved by Rambo and Procassini [44]: The thermal equili-
bration of two fluids at initially different temperatures, and the
slowing down of a fluid stream due to the collisional interac-
tions with a background fluid. The results presented in Rambo
and Procassini are in terms of the physical variables (with dimen-
sions), and therefore, the discussion and figures in this section
involve these variables (obtained by multiplying the nondimen-
sional variables solved by EUCLID by the corresponding reference
quantity). The primary reference quantities for the cases reported
here are

Nref = 1 x 102% cm 3

Mpes = 1.67 x 10724 g (proton mass),
Trer = 1.602 x 102 ergs (1keV),

e = 4.803 x 107" statcoulomb (elementary charge),

Xef = 0.1cm (1 mm),

and, therefore, the derived reference quantities are obtained
from (10) are:

Urer = 3.095 x 107 cm/s,  pper = 1.67 x 1074 g/cm 3,
fre = 3.23 x 10795, Pret = 1.602 x 10" Ba.

The specific heat ratio for all fluids is specified as y, = 5/3.
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Fig. 4. Thermal equilibration of two fluids at initially different temperatures. An excellent agreement is observed with results in the literature [44].

The first test considers two carbon fluids (ny = 2, Z(; 5y = 6, and
my; 2y = 12), and two cases with the following initial solutions (in
terms of the nondimensional variables):

Case 1:
Case 2 :

Ti=1, T, =025
Ti=1, T, =025
(39)

U =up; =0,
up=uy =0,

n=n;=1,
nq =0.1, n,=1,

The domain is x = [0, 1] with periodic boundary conditions, and it
is discretized by 8 grid points. The final time for the simulation
is specified as t; = 0.00155, which corresponds to a physical time
of ~5ps. A CFL of o = 0.0005 is specified, where o is given by
(27); this value is obtained by “trial-and-error” to ensure that the
equilibration time scale is resolved. Fig. 4 shows the evolution of
the temperatures of both the fluids: in both cases, the two fluids
equilibrate to the density-weighted mean of the initial tempera-
tures (n1T; +nyT,)/(ng + ny). An excellent agreement is observed
with prior results [44].

The second test considers two carbon fluids as well, and two
cases with the following initial solutions (in terms of the nondi-
mensional variables) are solved:

Case1: ni=n=1, u; =2.1166, u; =0, T;=T, =05
Case2: n; =01, n=1 u;=21166, u; =0, T =T5=05
(40)

The nondimensional u specified above corresponds to a phys-
ical velocity of 6.55 x 107 cm/s. The domain is x = [0, 1] with pe-
riodic boundary conditions, and it is discretized by 8 grid points.
The final time is specified as t; = 0.031, which corresponds to a
physical time of ~100ps. A CFL of o = 0.01 is specified to resolve
the frictional time scale. Fig. 5(a) and (b) show the evolution of
the velocities and temperatures of both the fluids for Case 1. The
first fluid « = 1 slows down and accelerates the second fluid o = 2
due to the inter-fluid friction; the velocities for both the fluids con-
verge to the mean value. The frictional forces also result in heating
both the fluids, as is observed by the increase in the temperatures
by a factor of ~ 10. Fig. 5(c) and (d) show the evolution of the ve-
locities and temperatures for Case 2, where the density of the first
fluid is 10 times lower. The velocities of both the fluids converge
to the density-weighted mean. The evolution of the temperatures
shows the rapid heating of the first (lower density) fluid due to the
friction, followed by cooling due to thermal equilibration, while the
second (higher density) fluid experiences a more gradual heating

due to friction and thermal equilibration. In both these cases, our
results agree well with those previously published [44].

5. Results

In this section, we use EUCLID to simulate multifluid flows
that are representative of laser-induced plasma experiments. We
consider the interactions of counterstreaming plasmas in vacuum
and in the presence of a gas fill. Both one-dimensional and two-
dimensional cases are simulated. The simulations reported in these
section use the following primary reference quantities that corre-
spond to the physical setup of HEDP experiments [4,6,7,53]:

Mper = 1.67 x 10724 g (proton mass),
Meer = 9.03 x 10 em = (ngge),
Tef = 1.602 x 10~ ergs (1keV),

e = 4.803 x 10~ "% statcoulomb (elementary charge),

Xef = 0.1cm (1 mm),

where n;; is the critical plasma density above which the fluid be-
comes opaque to electromagnetic radiation [54]. The derived refer-
ence quantities are obtained from (10), and they are:

Urer = 3.095 x 107 cm/s,  prer = 1.51 x 1072 g/cm 3,
tret = 3.23 x 1095, Pt = 1.447 x 10" Ba.

The subsequent discussions in this section describe the nondimen-
sional variables that are solved for by EUCLID; they can be multi-
plied by these reference quantities to obtain their physical values
with units. The specific heat ratio for all species in the simulations
presented in this section is specified as y, = 5/3.

The initial solution in the cases discussed here involve fluids
that exist with a specified density only within a part of the do-
main. This is implemented using a “smoothed slab” function that
is defined in one spatial dimension as

*min «\ 1 Xmax «\ 1
Y (X; Ox, Xmin, Xmax) = € [(6 a +e§) - ( & +e$) i|
(41)

This function attains unit value inside (X, Xmax), Smoothly
transitions to 0 with a width 8y, and is zero outside [Xy;;, Xmax]-
The transition width Jy is specified as a small number; however
we must caution the reader that very low values for &y results in
numerical overflow/underflow while evaluating Y'(x). In the parts
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Fig. 5. Frictional slowing of one fluid with respect to a background fluid with an initially nonzero relative velocity. An excellent agreement is observed with results in the

literature [44].

of the domain where a fluid doesn’t exist, its density is specified
as a small number (“numerical vacuum”) since zero density will
result in numerical exceptions. This number, ny,c, should be small
enough such that the fluid doesn’t significantly affect the overall
flow physics in these regions (where it does not exist), yet the
numerical discretization should be able to maintain the positivity
of density and pressure. While the WENO algorithm is not strictly
positivity-preserving, our use of the monotonicity-preserving lim-
its on WENO and the robust characteristic-based reconstruction (as
described in Section 3) allowed the numerical vacuum to be spec-
ified as nyac = 10714,

The first example we consider is the one-dimensional inter-
action of two counterstreaming plasmas. The domain is x<[O,
1], and we consider two fluids ng= 2. The initial solution is as
follows:

Ny (X, t = 0) = Nyac + Ao Y (X; Sx.0r» Xmin.ov> Xmax.a)

Tua(x,t=0)=1, Uy (x,0) =0 , a=1,2,

(42)

where
Xmin1 = =1, Xmax1 =0.2, Xmin2 = 0.8, Xmax2 =2,
5,('{1,2} =0.005,

and nyac = 107, This represents a setup where fluid o =1 is a
localized slab in x€[0, 0.2], and fluid o =2 is a localized slab in
x<[0.8, 1] with vacuum in between (see the top left plots in Figs. 6
and 7). The electron temperature is T, = 0.5, and we consider two
symmetric cases (hydrogen-hydrogen and carbon-carbon interac-
tions):

Case 1 (hydrogen — hydrogen) :
Case 2 (carbon — carbon) :

Mpuay =1, Zj2 =2, ﬁ~{1,2} = 0.5.
m{u} =12, 2(1_2) =6, n“'z) =0.1

The boundary conditions are as follows: An inviscid wall boundary
is imposed at x =0, and outflow is imposed at x =1 for fluid
o =1, while outflow is imposed at x = 0, and inviscid wall bound-
ary is imposed at x = 1 for fluid o = 2. The domain is discretized
by a grid with 256 points, and the final time for the simulations
is tr=04. The CFL number for Case 1 (hydrogen-hydrogen)
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was specified as 0.5, while that for Case 2 (carbon-carbon) was
specified as 0.05; these values ensure that the collisional source
terms are also linearly stable at the computed time step size.

Fig. 6 shows number density ng,, and pressure P,y in the
left column and the velocity ug ) in the right column for the
hydrogen-hydrogen interaction (Case 1), where successive rows
show the solution at simulation times of O (initial solution), 0.1,
0.23, and 0.4 (final time). The interaction can be described as fol-
lows. At t =0 (initial solution), each fluid is piled up at either
end of the domain. As the simulation progresses, the fluids expand
from either side of the domain, and by t = 0.1, they interpenetrate
each other. At this time, the velocity plot shows unimpeded expan-
sion for each hydrogen fluid as they leave the domain. However,
by t = 0.23, the friction between the fluids results in the outflow-
ing fluid at each end of the domain getting pulled back by the
dominant fluid that is flow in the opposite direction. For exam-
ple, at x— 0, the fluid o = 2 has assumed the positive (rightward)
velocity of the dominant fluid @ =1 because it is being pulled
back by it. At this time, the region between x~ 0.3 and x~ 0.7 ex-
hibits a multifluid counterstreaming flow. The pressure and density

plots show a sharper gradient compared to a smooth expansion at
t =0.1 (in the region x <0.2 for « = 2 and x> 0.8 for o = 1) indi-
cating the push-back from the dominant fluid. Finally, at t = 0.4,
while each fluid has been pushed back by the other at either end
of the domain, the friction results in the velocities converging to
a single value at each spatial location, and thus, this becomes a
“single-fluid” flow that can be solved by a multispecies, single-fluid
code.

Fig. 7 shows the solution for the carbon-carbon interaction
(Case 2), where the same quantities are plotted at the same
simulation times. Qualitatively, a similar behavior is observed;
however, since carbon has a higher atomic number Z,, the in-
teractions (electrostatic and collisional forces) are significantly
stronger. As a result, the fluids at either end of the domain are
unable to reach and exit the other end of the domain. Even at an
early time of t = 0.1, while each fluid interpenetrates each other
and flow in opposite directions in the region between x~ 0.2 and
x~0.8, the friction forces result in a small region adjacent to the
expansion front where the expanding fluid is getting pushed back
by the dominant fluid (for example, in the region 0.15 <x < 0.21
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for the fluid o = 2). At t = 0.23, the pressure and number density
gradients and the velocity show the push-back each fluid is facing
from the other. Finally, by t = 0.4, the fluids have converged to a
“single fluid” with identical velocities.

We now consider a two-dimensional interaction of two counter-
streaming fluids. The domain is x [0, 1], y [0, 2], and the initial
solution for the two fluids is:

Ng(x,y,t =0) = Nyac ‘i‘ fia T (X; Oxar, Xmin,» Xmax.a )
Ta(xvyat:0):TO+TaT(y§Syuv.)’min,ow_)/max,a) , a=1,2,
Uy (X, ), t =0) =14 (x,y,t =0)=0

(43)

where
Xmin1 = —1, Xmax1 = 0.2, Xmin2 = 0.8, Xmax2 =2,
8,(,{1_2} = 0.005,

Ymin,1 =Ymin2 = 0.8, ¥max1 = Ymax2 = 1.2, Sy.{l,z} =0.02,
ﬁ{],z} = 008, TO = 1, ﬂ],z} = 4,

and nyac =107 is the numerical “vacuum”. Along the x di-
mension, the density variation is identical to that in the one-
dimensional examples discussed above, and this is shown in
Fig. 8(a). Both the fluids are carbon (Z(; 5) = 6 and my; 3) = 12), and
we refer to the first fluid o = 1 as “carbon-left” (red curve) and the
second fluid o = 2 as “carbon-right” (blue curve). Along the y di-
mension, the temperature towards the center of the domain in this
dimension (0.8 <y <1.2) is specified to be 5 times hotter than the
temperature near the boundaries (y <0.8, y > 1.2). Fig. 8(b) shows
this temperature variation, which is identical for both fluids. This
represents a situation where the two localized slabs of plasmas
at each end of the domain are hotter in the middle than at the
edges. This case is representative of the laser-induced plasma ex-
periments where high-energy laser beams heat the carbon foils
around their middle, while the edges remain cooler. The electron
temperature is specified as T, = 0.5. The boundary conditions are
similar to that of the one-dimensional cases: Inviscid wall bound-
ary is imposed at x =0 for carbon-left and at x =1 for carbon-
right, and outflow is specified at x = 1 for carbon-left and at x =0
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Fig. 9. Evolution of the number density for the two-dimensional carbon-carbon interpenetration case: The red mesh is carbon-left, and the blue mesh is carbon-right. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Evolution of the x-velocity (u) for the two-dimensional carbon-carbon interpenetration case: The red mesh is carbon-left, and the blue mesh is carbon-right. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

for carbon-right. Outflow boundaries are specified for both fluids
aty =0, 2.

The final time for the simulation is t; = 0.35, and CFL is spec-
ified as o =0.05; this ensures that the time step size resolves
the collisional terms. Fig. 9 shows the evolution of the number
densities for the two fluids at t = {0.08,0.14,0.20, 0.35}, while
Fig. 10 shows the evolution of u, the x-component of the veloc-
ity. In these figures, the red surfaces correspond to carbon-left,
and the blue surfaces correspond to carbon-right. Along the x-
dimension, the overall dynamics is similar to that in the one-
dimensional example discussed above. The two fluids start ex-
panding towards each other, as can be observed at t=0.08.
The expansion is faster near the center of the domain along y
because of the higher temperature specified in that region. In
Figs. 9(a) and 10(a), the expansion front in 0.8 <y <1.2 leads that
near the y-boundaries. At t = 1.4, the two fluids have interpene-

trated into each other, and this is shown in Fig. 9(b). Fig. 10(b)
shows that both the fluids are expanding in the large majority
of the domain; however, they are also starting to get pushed
back by the other fluid. For example, carbon-left is being pushed
back by carbon-right near x = 1, and this is more pronounced for
0.8<y<1.2 due to the higher temperature. The inter-fluid fric-
tion prevents each fluid from reaching the other end of the do-
main, and by t = 0.2, they get pushed back. Fig. 9(c) shows the
sharp gradient in the number density that develops as a result
of this push-back, and Fig. 10(c) shows the velocities converging
to the same value near the x-boundaries, while counterstream-
ing flows exist towards the center of the domain 0.2 <x <0.8.
For example, near x = 0, carbon-right is being carried right-ward
(towards x =1) by carbon-left. The two fluids assume identi-
cal velocities by t = 0.35, and they essentially become a single
fluid.
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the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Finally, we consider the two-dimensional interaction of two
counterstreaming fluids in the presence of a gas fill. The details of
the setup is identical to that in the previous example of the two-
dimensional interaction of two carbon fluids with the addition of
helium as the gas fill. Thus, the number of fluids is ng= 3, and
the properties of the third fluid are Z3 = 2 and m3 = 4. The initial
solution for the third fluid, which we refer to as helium-fill, is as
follows:

n3(x,y, t = 0) = Nyac + fi3 T (X; 6x3, Xmin 3 Xmax.3)-
Lx,y,t=0)=Ty3=025, us(x,y,t=0)=v3(x,y.t=0)=0,
(44)

where i3 = 104 is the fill gas density, and
8x3 = 0.005, Xmin3 =0.22, Xmax3 = 0.78.

Thus, compared with the previous setup, the vacuum in between
the two carbon fluids in the initial solution is filled by a low-
density helium gas. The initial temperature for the two carbon flu-
ids vary along the y-dimension as before, as shown in Fig. 8(b), and
the initial temperature for the helium fluid is uniform. Fig. 11(a)
shows the number density at t =0, where the red and blue
meshes correspond to carbon-left and carbon-right, respective, and
the green mesh corresponds to helium-fill. The final time for the
simulation is specified as t; =0.4, and the CFL is specified as
o = 0.05. The boundary conditions for carbon-left and carbon-right

are same as before; outflow boundaries are specified for helium-fill
everywhere.

Fig. 11 shows the number density for the three fluids at various
solution times, while Fig. 12 shows the number density and pres-
sure variation along x at y = 1. As the two carbon fluids expand
from either end of the domain, they drag the helium gas fill along
with them, and this is observed in the solutions at t = 0.05 and
t =0.12. Fig. 13 shows the velocity along the x-dimension (u) at
y =1, and the solution at t = 0.12 shows that helium-fill assumes
the velocity of the dominant carbon fluid (carbon-left in x <0.5 and
carbon-right in x > 0.5), while the two carbon fluids are expanding
and interpenetrating. By t = 0.2, a large amount of helium-fill has
accumulated in the center of the domain, and the velocity varia-
tion indicates that it has started expanding outwards through the
two carbon fluids. Meanwhile, similar to the behavior observed in
the previous two-fluid cases, the carbon fluids from either end
are pushed back from the other boundary by the dominant fluid
at that boundary, and although they are counterstreaming around
the center of the domain, they have converged to a single veloc-
ity near the boundaries (x <0.3 and x> 0.7). The two carbon flu-
ids converge completely to a single velocity by t = 0.3, and each
fluid has been pushed back by the other at each end of the do-
main; however, helium-fill streams through the carbon fluids to ex-
pand outward, and the velocity variation at t = 0.3 shows signifi-
cant helium-carbon counterstreaming. Finally, at ¢t = 0.4, all three
fluids converge to a single velocity field and essentially become
one fluid.
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6. Conclusions

This paper reports the initial development of EUCLID, a multi-
fluid code for simulating plasma interpenetration. The governing
equations are the inviscid Euler equations, expressed as the
conservation of mass, momentum, and energy, for each ion fluid.
The formulation allows the partitioning of the same species into
multiple fluids or streams. The fluids interact through electrostatic
forces and collisional terms that include friction and thermal
equilibration (both ion-ion and electron-ion). The electrons are
assumed to be isothermal and inertia-less, and the plasma is
assumed to be quasi-neutral; thus, the fluid equations for the
electrons and the Poisson equation for the electrostatic potential
need not be solved. The governing equations are discretized
using a conservative finite-difference method, and the 5th-order
Monotonicity-Preserving WENO scheme is used for the upwind
discretization of the hyperbolic flux. Currently, the explicit 4th-
order Runge-Kutta method is used for time integration. EUCLID is
verified and its accuracy, convergence, and nonoscillatory behavior
is demonstrated using several benchmark flow problems and the
method of manufactured solutions, and these are reported in
this paper. Finally, we simulate one- and two-dimensional flows
that are representative of laser-induced plasma experiments-the
interactions of counterstreaming fluids in vacuum as well as in the
presence of a gas fill.

EUCLID is a “work-in-progress”, and this paper is intended as
a description of the basic algorithm. One of the challenges with
our current approach results from using an explicit time integra-

tion method. The time scales of the collisional terms (both friction
and thermal equilibration) are often faster than the convective and
acoustic time scales for our applications. In the results reported
in this paper, a very low CFL number was needed to resolve these
time scales, especially for interactions between heavier species like
carbon. More physically-relevant simulations will involve heavier
species such as gold (Z =40,m = 197) resulting in faster colli-
sional time scales. Thus, the implementation of implicit-explicit
(IMEX) time integration methods [55-57] to integrate the source
terms implicitly is being investigated. In addition, several aspects
of the physical model and their improvements are areas of active
research. Examples include removing the assumption of isother-
mal electrons and solving the electron energy equation along with
the ion fluid equations and the inclusion of heat source terms in
the energy equations to simulate the continued localized heat-
ing due to laser beams. Finally, counterstreaming plasmas result
in the growth of kinetic instabilities that have a significant effect
on the solution. A kinetic simulation of these instabilities within
a fluid code is computationally intractable; however, we are in-
vestigating the development of collisional kinetic models [58] that
will appear as kinetic friction and heating terms in the fluid
equations.
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Appendix A. Monotonicity-preserving WENO5 (MPWENOS5) scheme

This section summarizes the reconstruction procedure along dimension d; the purpose is to provide a brief but sufficient description
that allows the exact reproducibility of our algorithm. The readers are encouraged to refer to the original publications [48,49] for a detailed
description of this method. The fifth-order monotonicity-preserving WENO (MPWENOS5) scheme described here computes a left-biased
approximation to the flux primitive at the interface i+ %ed, given the values of the flux function at grid points i — 2ey, --- ,i+ 2e,. This
same procedure can be used to compute the right-biased approximation by providing the flux functions at the grid points i+ 3ey,--- ,i—
e, as the inputs (note the reverse ordering). The fifth-order WENO approximation can be computed as:

3

WENO5 __ (OJN. _ G —
fi+%ed - ;wlfn%ed’ W = Z3m=1 gm’ 1=1,2,3, (A1)
where
1 7 11
fitte, = e~ glie+ Gl 2
1 5 1
fite, = ~gfie tght ghee (A-20)
1 5 1
file, = 3hi+ ghee — gl (A2
are the three third-order approximations of f; il and
2
__a - . _1 . _6 ._3.
5'_6-1-51’ =123 =g Q=15 G=15 (A3a)
13 2 1 2
S1= ﬁ(fi—Zed - 2fi—ed + fl) + E(fi—Zed - 4fi—ed + 3fl) g (A'3b)
13 2 1 2
S = ﬁ(fi—ed - 2fi + fi+ed) + Z(fi—ed - fi+ed) ’ (A'3C)
13 2 1 2
S3 = ﬁ(f' - 2fi+ed + fi+2ed) + E(ﬁ - 4fi+ed + 3fi+2ed) ) (A.3d)

where ¢; are the WENO weights that are computed by scaling the optimal weights ¢; by the smoothness indicators S;, and € = 106 is a
small parameter to prevent division by zero. In the regions where the solution is smooth, w; — ¢}, and (A.1) becomes

3
I 1 13 47 27
i\frv?:‘?s = Z lei(Jr)%ed = ﬁfi—Zed - @fifed + @fl + @fﬂed
=1

1
_%fH»Zedv (A.4)

which is the fifth-order approximation of f; 1 e Near discontinuities, the weights w; corresponding to the stencils containing the discon-
2
tinuity go to zero, and a nonoscillatory approximation biased away from the discontinuity is computed.
The MPWENOS5 approximation is obtained from fi"ﬁ";OS by ensuring that the final approximation is within the monotonicity-preserving
2%

bounds. Defining the following functions:

sign(x) = {_11 z i 8 (A.5a)
. 1 . . .

minmod(x,y) = j(51gn(x) + sign(y))min(|x]|, |y|), (A.5b)

median(x, y, z) = x + minmod(y — x, z — X), (A.5¢)

the monotonicity-preserving approximation is expressed as:

_ : 'WENO5 £min max
fiste,= med1an<fi+%ed e, fi+%ed). (A.6)
The minimum and maximum bounds are computed as

min  _ ; " f med H - fUL LC
j‘i+%ed_max[m1n<ﬁ,f,+ed,]‘i+ ),mm(f,, ile, i+%ed>], (A7)

1
2€d
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%, = min[max(fi, five,s fi’ﬂe%ded), max( fi. fiﬂL%ed, fiLf%ed)], (A.7b)
where
1
ir:—le%ded = i (fl + fi+ed - din-]i—efed)’ (ASa)
fitye, = fit v(fi — fie,)- (A.8b)
LC _ 1 :3 dLC A8
fi_*_%ed_fi‘kj(fi*fi—ed)“i’? i—%ed ( . C)

are the median value of the flux, an upper limit based on v, and an estimate allowing for a large curvature (LC), respectively. In our
implementation, we set v =2, 8 =4, and d%c) = d??)ed = d’(\(')M, where

d"™ = minmod(d;. diye,):  di = fi-e, = 2fi + fite,- (A9)

i+ley
These choices for the monotonicity-preserving scheme work well for our applications, which involves density and pressure varying from
0() to 0(10‘14), based on the discussion on the role of these parameters and their effect on the solution [49].

Appendix B. Eigenstructure

The complete eigenstructure of (13), derived using Mathematica [51], is provided in this section. The eigenvalues of the flux Jacobian
8f&d)/8Ua; d € {x,y, z} along each dimension for the fluid with index « are:

A = {Ua, Ug. o Uy — C Ug +C5 ), (B.1a)

A&y) ={Ua,va,1/a,1/a—CZaVa+CZ}’ (B]b)
AP = Wy, Wy, Wy, Wy — 5 Wy + €51, (B.1c)

where ¢}, = /voPy/pa is the augmented speed of sound, and ug, Ve, W are the Cartesian components of the velocity vector ug. The right
and left eigenvectors along the three dimensions are provided below. In these expressions,

_ZT,

2 2 2 2
S, =UL VLW, Ty = , and pg=ys -1
My
Along X.
1 1
1 c2 c2
Uy —Ch Uy +C;
u o o
o C(»;Z Cth
RP=] 0 Pa 2 & &
Pa 0 We o o3
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2 21y 2 21y
3(s2 - 2) GoTw) w1 Gi-EE) w1
PaWe  PaVo 3 (Sa Mo 2c? G Ha 2¢? o T
— Y 0 0 pli 0
_Va 0 L 0 0
Pa Pa
LX) — (8227 S5 V) 1 Hally MoV UaWa e
o 2072 + 15 2 o c?
3 Ua G 1 1 1
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The eigenvalues and eigenvector matrices for the entire system (15) are obtained by assembling the eigenvalues and eigenvector ma-

trices for each fluid in a block-wise manner:
d d d
A@ — {Ag L AD ,A,gg},

TR@ @
Rl L]

R@ — RO L@ — L@

R@

L ny | L

for de{x, y, z}.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.compfluid.2019.04.012.
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