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a b s t r a c t 

The interpenetration of counterstreaming plasmas is an important phenomenon in several application 

areas, such as astrophysical flows, design of controlled fusion devices, and laser–induced plasma experi- 

ments. Multispecies “single-fluid” codes are unable to model this phenomenon due to the single velocity 

representation for all the species/fluids. Kinetic codes, though capable of modeling interpenetration, are 

computationally prohibitive for at-scale simulations. In this paper, we propose a multifluid model that 

solves the fluid equations for each ion fluid or stream. This allows distinct flows that interact with each 

other through electrostatic and collisional forces. We introduce and describe our code, EUCLID, that uses 

a conservative finite-difference formulation to discretize the governing equations in space. The 5th-order 

Monotonicity-Preserving WENO scheme is used for the upwind approximation of the hyperbolic flux, 

and the explicit 4th-order Runge–Kutta scheme is used for time integration. The code is verified for sev- 

eral benchmark cases and manufactured solutions. We simulate one- and two-dimensional interactions 

of counterstreaming plasmas in vacuum as well as in the presence of gas fill, where the setups are rep- 

resentative of laser-induced plasma experiments. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Counterstreaming plasmas often exhibit interpenetration, where

they flow through each other, and localized regions may exist

where plasma species or populations inhabiting the same physi-
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al space may have different velocities. This dynamics plays a sig-

ificant role in applications such as astrophysical flows, controlled

usion devices [1,2] , and experiments involving the interaction

f laser-induced plasma streams [3–7] . Multispecies, single-fluid

odes [8] fail to capture the interpenetration; the assumption of

 single velocity field results in counterstreaming plasmas stagnat-

ng and causing density pile-ups. Alternatively, collisional, kinetic

odes that solve the Boltzmann equations for each species [9–

3] are able to represent this phenomenon; however, they are

omputationally expensive due to their high-dimensionality, and

herefore, impractical for experimental-scale simulations. An effort

as also been made to derive species diffusion models [14,15] for

ultispecies, single-fluid codes. These are empirical in nature, and

he introduction of a diffusion term results in a stiff system of par-

ial differential equations (PDEs). The drawbacks of these current

pproaches motivate the use of a multifluid model. 

The multifluid equations are derived by taking the velocity-

pace moments of the Boltzmann equation for each species [16] .

his results in a distinct set of fluid equations for each stream

r fluid that is solved along with the Maxwell’s equations or

ome simplification thereof. Over the last few decades, multifluid

odels have been successfully applied to several plasma appli-

ations. In the context of magnetically-confined fusion device

imulations, these methods have been applied to θ-pinch [17] and

https://doi.org/10.1016/j.compfluid.2019.04.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.04.012&domain=pdf
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Fig. 1. Illustration of the laser-induced plasma interactions in HEDP experiments 

with counterstreaming plasmas ablating off the carbon discs. 
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-pinch [18,19] simulations. The multifluid approach has been

pplied to device edge plasma simulations where the modeling

f impurities introduced from the device wall is essential [20–

5] . In astrophysics, the multifluid approach has been used to

tudy the interactions of the solar wind with the magneto-

phere [26] and the local interstellar cloud [22,27] , collisionless re-

onnection [18,19,28–30] , and the interactions of weakly/partially-

onized plasmas in the heliosphere and the atmosphere [23,31,32] .

ther applications include plasma glow discharge [33,34] , ICF

apsule detonation [35,36] , and plasma-enhanced combustion [37] .

 majority of these multifluid approaches use a predefined

umber of fluids, for example, two-fluid formulations with one

on species and one electron [18,19,25,28,36,38–40] , two-fluid

ormulations with one ion and one neutral species [22,23] , and

hree- and four-fluid formulations with one ion species, one

lectron species, and neutral species including dust [22,29,32] .

ormulations with an arbitrary number of species have also been

roposed [21,27,34,41] . 

This paper focuses on the interactions of laser–induced coun-

erstreaming plasmas in high energy density physics (HEDP) exper-

ments [3–7] . Fig. 1 illustrates a typical setup of such experiments.

wo foils/discs made of carbon or a carbon-based compound are

rradiated with high-energy laser beams, and the interaction of the

ounterstreaming plasmas ablating off them is studied. Multifluid

odels for these applications were proposed [42–44] that solved

he fluid equations for two ion species in a one-dimensional

omain. A kinetic model was incorporated [42] to represent the

riction and heating resulting from plasma instabilities. Overall,

hese studies showed that a multifluid model was essential to

odel the interpenetration, and a good agreement with kinetic

imulations was observed [44] . In this paper, we present an EU-

erian Code for pLasma Interpenetration Dynamics (EUCLID) that

xtends these previous effort s in developing and implementing

 computationally efficient multifluid model for the applications

escribed above. EUCLID solves an electrostatic multispecies, mul-

ifluid model that comprises the inviscid Euler equations for each

on fluid or stream, where the number of ion fluids/streams is

rbitrary. The fluids interact with each other through the electro-

tatic forces as well as collisional friction and thermal equilibration

erms [44] . We note that in this formulation, each grid cell has
ome amount of all fluids. That is to say that there are no inter-

aces separating different fluids. Furthermore, a given material or

lasma species (such as hydrogen or carbon) may be represented

y more than one fluid; for example, in 1 , the carbon ablated from

ach disk may be represented by its own distinct fluid. The Debye

ength in our applications is much smaller than the characteristic

ength scales (by a factor of the order of 10 5 –10 6 ), and therefore,

e use a reduced model for the electrons that simplifies the elec-

rostatic force term. The nondimensionalized governing equations

re discretized in a Cartesian domain with the conservative finite-

ifference formulation [45,46] . The basic data structures in EUCLID

re implemented using Chombo [47] , a parallel, block-structured

daptive mesh refinement (AMR) library for PDEs, and therefore,

UCLID is multidimensional and supports distributed-memory 

arallelism. 

The primary numerical challenge in our applications stems from

ows involving the presence of a fluid that exists only in a local-

zed part of the domain; it doesn’t exist elsewhere. Since the fluid

ensity cannot be numerically zero anywhere in the domain (even

f other fluids with nonzero densities exist in the same region), we

pecify the species density corresponding to “numerical vacuum”

s 10 −14 . This results in very steep gradients, where the species

ensity and pressure may transition from O (1) to O 

(
10 −14 

)
within

 few grid cells. Therefore, we use the 5th-order weighted essen-

ially nonoscillatory (WENO) scheme [48] and the characteristic-

ased reconstruction procedure, which has been shown to be more

obust than reconstructing the conserved or the primitive vari-

bles for supersonic flows involving strong shocks and gradients.

n addition, because the WENO scheme may result in O ( ε) oscilla-

ions, where ε is a WENO parameter that is typically set to 10 −6 ,

e implement the monotonicity-preserving (MP) limits [49] to

void any numerical oscillations. The equations are evolved

n time using the four-stage, 4th-order explicit Runge–Kutta

RK4) method. 

The primary contributions of this paper are a detailed descrip-

ion of the multifluid model, the assumptions and reformulations

hat are needed for a robust numerical solution in our application

ontext, and the ingredients of our numerical algorithm. The

utline of the paper is as follows. The multifluid model that

UCLID solves is described in Sections 2 , and 3 describes the

umerical method. Section 4 outlines the code verification using

xact solutions, manufactured solutions, and benchmark cases,

nd the simulation of flows representative of the application

reas described above are shown in Section 5 . Conclusions are

ummarized in Section 6 . 

. Governing equations 

The inviscid Euler equations for each ion fluid are obtained

y taking the moments of the collisionless Boltzmann equation

nd neglecting viscosity and heat conduction [16] , and can be ex-

ressed in their nondimensional form as: 

∂ρα

∂t 
+ ∇ · ( ραu α) = 0 , (1a) 

∂ραu α

∂t 
+ ∇ ( ραu α � u α + P α) = − Z αn α∇φ + 

∑ 

β � = α
R α,β + R α,e , 

(1b) 

∂E α
∂t 

+∇ · { ( E α + P α) u α} = −Z αn αu α · ∇φ+ 

∑ 

β � = α

(
R α,β · u α + Q α,β

)
+ R α,e · u α + Q α,e , (1c) 

here α = 1 , · · · , n f is the fluid index, n f is the number of fluids,

α is the density, u α is the velocity vector, P α is the pressure, Z α is
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P  
the ionization number, φ is the electrostatic potential, n α = ρα/m α

is the number density, m α is the atomic mass, and 

E α = 

P α

γα − 1 

+ 

1 

2 

ραu α · u α (2)

is the internal energy. The ideal gas law P α = n αT α is assumed,

and the specific heat ratio is specified as γα = 5 / 3 for all flu-

ids. On the right-hand side (RHS) of (1), the terms −Z αn α∇φ
and −Z αn αu α · ∇φ represent the electrostatic force and the work

done by it, respectively, and the remaining terms represent the

collisional interactions between the ion fluids and electrons, as

described below. We reiterate here that (1) is solved for each

“fluid” or distinct population of ion species; a single species can

be partitioned into multiple populations and modeled as separate

fluids. 

Friction and thermal equilibration terms. The frictional force on

fluid α due to fluid β is proportional to the velocity of β relative

to that of α, and this can be expressed as 

R α,β = m αn ανα,β

(
u β − u α

)
= −R β,α, (3)

and the total heating of fluid α due to fluid β is 

Q α,β = Q 

fric 
α,β + Q 

eq 

α,β
, (4)

where 

Q 

fric 
α,β = m α,βn ανα,β

(
u α − u β

)
·
(
u α − u β

)
(5)

is the frictional heating between two fluids that is proportional to

the square of the relative velocity, and 

Q 

eq 

α,β
= 3 m αn α

να,β

m α + m β

(
T β − T α

)
= −Q 

eq 

β,α
(6)

is the thermal equilibration due to a temperature difference be-

tween the two fluids. The collisional coefficient να, β is given

by [44] 

να,β = 

4 

√ 

2 π

3 

Z 2 αZ 2 
β

e 4 n β�α,β

m αm α,β

×
[

r 
(
u α − u β

)
·
(
u α − u β

)
+ 

T α

m α
+ 

T β

m β

]− 3 
2 
(

n ref x ref 

T 2 
ref 

)
, (7)

where m α,β = m αm β/ 
(
m α + m β

)
. Similarly, the electron–ion fric-

tion and thermal equilibration terms are 

R α,e = −R e,α = −m e n e νe,α( u α − u e ) , (8a)

Q α,e = Q 

eq 
α,e = −Q 

eq 
e,α = −3 m e n e 

νe,α

m α + m e 
( T α − T e ) , (8b)

where the electron-ion friction heating Q 

fric 
α,e has been ignored.

Since m e � m α⇒ m α,e ≈ m e , we have 

νe,α = 

4 

√ 

2 π

3 

Z 2 αe 4 n α�ei 

m 

2 
e ( T e /m e ) 

3 
2 

(
n ref x ref 

T 2 
ref 

)
. (9)

as the simplified form for the electron–ion collisional coeffi-

cient [44] . In the simulations reported in this paper, the ion–ion

log-lambda is �α,β = 5 and the electron–ion log-lambda is �e,α =
10 , unless otherwise mentioned, and r = [ 2 / ( 9 π) ] 1 / 3 is a constant.

Eq. (1) is expressed in terms of nondimensional variables, and

these can be multiplied with the corresponding reference quantity

to obtain their physical values. The primary reference quantities

and their CGS units are mass m ref (g), number density n ref ( cm 

−3 ),

length x ref (cm), temperature T ref (ergs), and charge e (elementary

charge in statcoulomb). The derived reference quantities and their

units are: 
 ref = 

√ 

T ref / m ref ( cm / s) , 

ref = m ref n ref (g / cm 

3 ) , 

 ref = x ref / u ref = x ref 

√ 

m ref / T ref (s) , 
 ref = n ref T ref ( Ba ) , 

ref = T ref /e (V) . 

(10)

Electron Model. The fluid equations for electrons can be ex-

ressed by removing the R α,e and Q α,e terms in (1) and replac-

ng the subscript α with the subscript e in the remaining terms,

nd these equations can be solved along with the ion fluid equa-

ions to resolve the electron dynamics, where the Poisson’s equa-

ion is solved for the electrostatic potential. However, to avoid the

tiff time scales arising from the electron thermal velocity (for ex-

mple, the electron plasma frequency), we make the following as-

umptions: 

∂ρe u e 

∂t 
+ ∇ ( ρe u e � u e ) → 0 ⇒ ∇P e = n e ∇φ + 

∑ 

α

R e,α, (11a)

 e = n e T e ( T e constant ) , (11b)

 e = 

∑ 

α

n αZ α, u e = 

1 

n e 

∑ 

α

Z αn αu α. (11c)

Eq. (11a) and (11b) assume that the electrons are inertialess

nd isothermal, respectively. Eq. (11c) assumes that the plasma

s quasineutral with zero currents, which is a consequence of the

ebye lengths being much smaller than the length scales of inter-

st in our applications. Thus, we do not resolve electron dynamics,

nd our governing equations are deliberately limited to applica-

ions without significant charge separation between electrons and

ons. Since the electrons are assumed to be isothermal, they act

s “infinite” sources or sinks for the ion energy; consequently,

he model is not energy-conservative, although this can easily be

hanged. We will explore higher-fidelity electron models in future

ublications. The electric field can be obtained by expressing the

lectron pressure in (11a) as (11b) and rearranging: 

 φ = 

T e 

n e 
∇ n e − 1 

n e 

∑ 

α

R e,α. (12)

ubstituting (12) in (1) and adding ∇( Z αT e n α) and ∇ · ( Z αT e n αu α)

n both sides of (1b) and (1c) , respectively, the equations for the

on fluids are: 

∂ρα

∂t 
+ ∇ · ( ραu α) = 0 , (13a)

∂ραu α

∂t 
+ ∇ ( ραu α � u α + P ∗α) = 

Z αT e 

n e 
[ n e ∇n α − n α∇n e ] 

+ 

Z αn α

n e 

∑ 

β

R e,β

+ R α,e + 

∑ 

β � = α
R α,β , (13b)

∂E α
∂t 

+ ∇ · { ( E α + P ∗α) u α} = 

Z αT e 

n e 
[ n e ∇ ( u αn α) − ( u αn α) ∇n e ] 

+ 

Z αn α

n e 

∑ 

β

u α · R e,β

+ 

∑ 

β � = α

(
R α,β · u α + Q α,β

)
+ R α,e · u α + Q α,e , (13c)

here 

 

∗
α = P α + Z αT e n α (14)
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s the augmented pressure, and Z αT e n α is the “electron pressure”.

he main motivation behind including the electron pressure on

he left-hand-side (LHS) of (13) is to allow its inclusion in the

pwinding of the spatial discretization operator described in the

ext section. The electrostatic force acting through this term is

dvective in nature, and therefore it should be included along with

he hydrodynamic pressure P α and the convective velocity u α in

he calculation of the wavespeeds. 

Thus, to summarize, (13) with α = 1 , · · · , n f represents the

omplete system of equations solved by EUCLID. We note that (13)

educes to the inviscid, compressible Euler equations governing

eutral gas dynamics [50] for n f = 1 , Z α = 0 . 

. Numerical method 

Eq. (13) constitutes a system of N hyperbolic PDEs with source

erms that can be expressed as 

 t U + ∇ · F ( U ) = S ( U ) , (15) 

here 

U ≡
[
U 1 , · · · , U α, · · · , U n f 

]T 
, 

 ( U ) ≡
[
F 1 ( U 1 ) , · · · , F α( U α) , · · · , F n f 

(
U n f 

)]T 
, 

S ( U ) ≡
[
S 1 ( U ) , · · · , S α( U ) , · · · , S n f ( U ) 

]T 
, 

re the state vector, flux tensor, and source vector for all the flu-

ds with N = 5 n f components (5 components for each set of three-

imensional fluid equations), and 

 α( U α) = 

[
ρα, ραu α, E α

]T 
, (16a) 

 α( U α) = 

[
ραu α, ραu αu α + P ∗α, ( E α + P ∗α) u α

]T 
(16b) 

re the state vector and flux tensor for fluid α, respectively, and 

 α( U ) = S elec 
α ( U ) + S coll 

α,ii ( U ) + S coll 
α,ei ( U ) , 

s its source term comprising the electrostatic and collisional

erms: 

 

elec 
α ( U ) 

= 

Z αT e 

n e 

[
0 , n e ∇ n α − n α∇ n e , n e ∇ · ( n αu α) − n αu α · ∇n e 

]T 
, 

(17a) 

 

coll 
α,ii ( U ) = 

∑ 

β � = α
m αn ανα,β

×

⎡ 

⎢ ⎣ 

0 (
u β − u α

)
(
u β − u α

)
· u α + 

m α,β ( u β−u α ) 
2 

m α
+ 

3 ( T β−T α ) 
m α+ m β

⎤ 

⎥ ⎦ 

, (17b) 

 

coll 
α,ei ( U ) = m e n e ⎡ 

⎣ 

0 

νe,α ( u e − u α) + 

Z αn α
n e 

∑ 

β νe,β

(
u β − u e 

){
νe,α ( u e − u α) + 

Z αn α
n e 

∑ 

β νe,β

(
u β − u e 

)}
· u α + 

3 νe,α ( T e −T α ) 
m α+ m e 

⎤ 

⎦ . 

(17c) 

We note that the flux tensor of fluid α depends only on the

tate vector of fluid α, while the source term for each fluid is a

unction of the other fluids as well since it contains the inter-fluid

nteractions. In subsequent discussions, we refer to the following

quation: 
 t U + ∇ · F ( U ) = S elec ( U ) , S elec ( U ) ≡
[

S elec 
α ( U ) 

∣∣α = 1 , · · · , n f 

]T 

(18) 

s the “collisionless” multifluid equations, where the collisional

ource terms have been excluded. 

Spatial discretization. Eq. (15) is discretized on a three-

imensional Cartesian grid, with i ≡ { i, j, k } as the grid index, and

he conservative finite-difference formulation [45,46] can be writ-

en at a grid point as: 

dU i 

dt 
= L ( U i ) ≡ −

3 ∑ 

d=1 

( 

ˆ f ( 
d ) 

i + 1 2 e d 
− ˆ f ( 

d ) 

i − 1 
2 e d 


x 

) 

+ S i , (19) 

here U i and S i ≡ S ( U i ) are the cell-centered values of the state

nd source vectors, d is the dimension index, and e d is the unit

ector along d (its d -th component is 1 and the other components

re 0). The grid spacing, 
x , is taken as uniform in all dimensions

n our implementation. The high-order approximation to the flux

rimitive, ˆ f ( d ) , is 

 

 

( d ) 

i + 1 2 e d 
= S 
({ 

f ( 
d ) 

i + k e d 

∣∣∣− w L ≤ k ≤ w R 

} )
= h 

( d ) 

i + 1 2 e d 
+ O ( 
x p ) , (20)

here p is the order of the discretization scheme, S is the finite-

ifference reconstruction operator, w L and w R define its stencil

idth, and h 

( d ) is the flux primitive satisfying: 

 

( d ) ( x ) ≡ f ( d ) ( U ( x ) ) = 

1 


x 

∫ x d + 
x 
2 

x d − 
x 
2 

h 

( d ) 
(
ξ
)
d ξ (21)

nd f ( d ) ( U ) ≡ F ( U ) · e d is the d -th component of the flux tensor. The

umerical flux approximation 

ˆ f ( 
d ) 

i + 1 
2 

e d 
is computed at the cell inter-

aces i ± 1 
2 e d independently along each dimension; the following

iscussion describes this for one spatial dimension. 

The vector flux approximation is reconstructed at the cell inter-

ace using a characteristic-based approach [45,46,48] , where it is

omputed as: 

 

 i + 1 2 e d 
= 

[ 
R 

( d ) 
(

U 

Roe 
i + 1 2 e d 

)] 
ϕ i + 1 2 e d 

, (22) 

here R ( d ) is the matrix whose columns are the right-
igenvectors of the flux Jacobian evaluated at the Roe-averaged
tate U 

Roe 

i + 1 
2 

e d 
[50] . The Roe-fixed scheme [48] is used to compute

he components of the characteristic flux vector, ϕ 

i + 1 
2 

e d 
, at the cell

nterfaces: 

ϕ 

( k ) 

i + 1 2 e d 
= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ϕ 

( k ) , L 

i + 1 2 e d 
if λ( d ) 

k, i 
, λ( d ) 

k, i + 1 2 e d 
, λ( d ) 

k, i + e d > 0 

ϕ 

( k ) , R 

i + 1 2 e d 
if λ( d ) 

k, i 
, λ( d ) 

k, i + 1 2 e d 
, λ( d ) 

k, i + e d < 0 

1 
2 

[ 
ϕ 

( k ) , L 

i + 1 2 e d 
+ ϕ 

( k ) , R 

i + 1 2 e d 
− λ( d ) 

k, max 

(
� 

( k ) , R 

i + 1 2 e d 
− � 

( k ) , L 

i + 1 2 e d 

)] 
otherwise 

, 

(23) 

 i + 1 2 e d 
= 

[ 
ϕ 

( k ) 

i + 1 2 e d 

∣∣∣k = 1 , · · · , N 

] 
, 

here λ( d ) 

k, { i , i + e d } are the k -th eigenvalue (characteristic wavespeed)

long dimension d evaluated at the cell-centered solution U { i , i + e d } ,
( d ) 

k, i + 1 
2 

e d 
is the k -th eigenvalue evaluated at the Roe-averaged state

 

Roe 

i + 1 
2 

e d 
. The left- and right-biased characteristic flux and solution

omponents at the cell interfaces are computed as: 

 

( k ) , L 

i + 1 2 e d 
= MPWENO5 

(
ϕ 

( k ) 
i −2 e d 

, ϕ 

( k ) 
i −e d 

, ϕ 

( k ) 
i 

, ϕ 

( k ) 
i + e d , ϕ 

( k ) 
i +2 e d 

)
, (24a) 

 

( k ) , R 

i + 1 2 e d 
= MPWENO5 

(
ϕ 

( k ) 
i +3 e d 

, ϕ 

( k ) 
i +2 e d 

, ϕ 

( k ) 
i + e d , ϕ 

( k ) 
i 

, ϕ 

( k ) 
i −e d 

)
, (24b) 
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( k ) , L 

i + 1 2 e d 
= MPWENO5 

(
� 

( k ) 
i −2 e d 

, � 

( k ) 
i −e d 

, � 

( k ) 
i 

, � 

( k ) 
i + e d , � 

( k ) 
i +2 e d 

)
, (24c)

� 

( k ) , R 

i + 1 2 e d 
= MPWENO5 

(
� 

( k ) 
i +3 e d 

, � 

( k ) 
i +2 e d 

, � 

( k ) 
i + e d , � 

( k ) 
i 

, � 

( k ) 
i −e d 

)
, (24d)

where ϕ 

( k ) 
( ·) , � 

( k ) 
( ·) represent the k -th component of the cell-centered

characteristic flux and solution vectors ϕ( ·) , ϱ( ·) , respectively,

and MPWENO5( ·) is the 5th-order monotonicity-preserving WENO

scheme [4 8,4 9] summarized in Appendix A . The cell-centered char-

acteristic flux and solution vectors are calculated as 

ϕ ( ·) = 

[ 
L ( d ) 
(

U 

Roe 
i + 1 2 e d 

)] 
f ( ·) , � ( ·) = 

[ 
L ( d ) 
(

U 

Roe 
i + 1 2 e d 

)] 
U ( ·) , (25)

where L ( d ) 
(

U 

Roe 

i + 1 
2 

e d 

)
is the matrix whose rows are the left-

eigenvectors of the flux Jacobian evaluated at the Roe-averaged

state U 

Roe 

i + 1 
2 

e d 
. 

In the above method, the Roe-averaged state is computed inde-

pendently for each fluid at the cell interfaces, i.e., the state vectors

of each fluid U α is extracted from U , and the Roe-averaged state

is calculated. The complete eigenstructure ( λ( d ) , L ( d ) , R ( d ) ; d ∈ { x, y,

z }) for the multifluid system (15) required by the characteristic-

based procedure outlined above is provided in Appendix B . We

reiterate here that the contribution of the electron pressure,

included on the LHS of (13), is incorporated into the derivation

of the characteristic wavespeeds, and consequently, the upwind

discretization. Thus, to summarize, the following are the steps in

the discretization of the hyperbolic flux term in (15) along each

dimension d : 

1. At each cell interface i + 

1 
2 e d , compute the Roe-averaged

state U 

Roe 

i + 1 
2 

e d 
[50] , its eigenvalues λ( d ) 

(
U 

Roe 

i + 1 
2 

e d 

)
, and its left

and right eigenvector matrices L ( d ) 
(

U 

Roe 

i + 1 
2 

e d 

)
, R ( d ) 

(
U 

Roe 

i + 1 
2 

e d 

)
using the expressions given in Appendix B . 

2. Compute the characteristic flux and solution vectors ϕ( ·) , ϱ( ·) 
at all the grid points needed by the MPWENO5 operator

as (25) . 

3. Reconstruct the left- and right-biased characteristic flux and

solution vectors at the cell interface i + 

1 
2 e d as given by (24)

using the MPWENO5 scheme in Appendix A . 

4. Apply the Roe-fixed upwinding (23) procedure to compute

the upwind characteristic flux vector at the interface ϕ 

i + 1 
2 

e d 
,

and then compute the conserved flux vector using (22) . 

The source term in (15) comprises the electrostatic and colli-

sional source terms, as given in (17). While the collisional source

term does not contain any derivatives, the electrostatic source

term (17a) contains gradient and divergence terms. These are com-

puted using the fourth-order central difference operator along each

dimension, which can be expressed for an arbitrary grid variable ψ 

as: 

∂ψ 

∂x ( d ) 

∣∣∣∣
i 

= 

1 

12
x 

(
ψ i −2 e d 

− 8 ψ i −e d 
+ 8 ψ i + e d − ψ i +2 e d 

)
+ O 

(

x 4 
)
. 

(26)

This differencing is applied component-wise for vector quantities. 

Time integration. Eq. (19) is a ordinary differential equation

(ODE) in time, and it is integrated using the fourth-order, four-

stage, explicit Runge–Kutta method. Since the time integration

method is explicit, the time step 
t is restricted by the CFL cri-

terion, where the CFL number is defined as 

σ = 
t 
max �,α( | u α| + c ∗α) 


x 
, (27)
here � is the total domain, α is the fluid index, and c ∗α =
 

γαP ∗α/ρα is the “augmented” speed of sound that is computed

rom the augmented pressure in (14) . Linear stability typically re-

uires σ < 1, although this is specific to the spatial discretization

ethod, and it is not a sufficient condition for stability for nonlin-

ar simulations. Eq. (27) does not take into account the time scales

f the collisional source terms, (17b) and (17c) ; consequently, a

ower time step that resolves the collisional time scales is needed,

nd this is reported in the simulations presented in subsequent

ections. 

. Verification 

EUCLID is verified through several benchmark test problems.

ince (13) reduces to the inviscid Euler equations for gasdy-

amics for Z α = 0 , n f = 1 ), standard compressible flow test cases

re solved and the results verified. Since few benchmark prob-

ems exist for our specific applications, we verify our code for

harged fluids using the following approach. An analytical, easily-

ifferentiable form is assumed for the solution U , and (19) is mod-

fied as 

dU i 

dt 
= L ( U i ) − L ex ( U i ) , (28)

here L ex ( U i ) is the exact form of L ( U i ) obtained by analytically

valuating its constituent terms. We then verify that the numerical

rror in computing L ( U ), quantified as 

 = ‖ L ( U ) − L ex ( U ) ‖ , (29)

onverges to zero at the theoretical order of the spatial discretiza-

ion scheme, where ‖ ( ·) ‖ is an appropriate norm over the entire

rid. In all the cases described in this section, we take the discrete

-norm ‖ ( ·) ‖ 2 . The analytical solutions used here are the ones that

ould be derived by Mathematica [51] in a reasonable time while

esting as many terms in the governing equations as possible. EU-

LID is implemented for the three-dimensional equations; lower-

imensional flows are simulated by specifying a small number of

rid points (the minimum required by the finite-difference stencil)

nd periodic boundary conditions along the inactive dimension(s).

hese tests are repeated along each dimension to verify the code;

or example, a two-dimensional test is repeated in the x –y, y –z ,

nd x –z planes. 

.1. Collisionless multifluid equations 

The collisionless multifluid equations are given by (18) , and the

erification tests in this section demonstrate the accuracy, conver-

ence, and nonoscillatory properties of our algorithm. 

Accuracy and convergence. Our implementation is verified for a

ingle charged fluid ( n f = 1 ) by generating a two-dimensional so-

ution that results in all terms in (18) being nonzero (except those

long the third dimension). The governing Eqs. (13), contain terms

hat are either uni-dimensional (for example, ρu, ρv, ρu 2 , etc.) or

i-dimensional (for example, ρuv, ρuw, ρvw , etc.), and therefore, a

wo-dimensional test applied in all three planes ( x –y, y –z , and x –z )

s sufficient. Since the number of fluids is 1, the fluid index sub-

cript is omitted. The species is set to helium ( m = 4 , Z = 2 ), and

he solution is prescribed as 

( x, y ) = 1 + 

1 

5 

cos ( 2 πx ) cos ( 2 πy ) , (30a)

 ( x, y ) = 

1 

2 

cos ( 2 πx ) cos ( 4 πy ) , (30b)

 ( x, y ) = 

1 

4 

cos ( 4 πx ) cos ( 2 πy ) , (30c)



D. Ghosh, T.D. Chapman and R.L. Berger et al. / Computers and Fluids 186 (2019) 38–57 43 

Fig. 2. Error vs. grid spacing for (a) a two-dimensional solution with a single fluid, and (b) two two-dimensional 2-fluid equilibria. The order of convergence is at least 4 in 

both cases; the order is closer to 5 for the single-fluid case because the electrostatic source terms, which are discretized using a 4th order discretization, are very small for 

this case, and the flux divergence term, discretized by the 5th-order MPWENO scheme, is dominant. 
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 ( x, y ) = 0 , (30d) 

 ( x, y ) = 2 + 

1 

4 

cos ( 2 πx ) cos ( 2 πy ) . (30e) 

The electron temperature T e is 1, and the specific heat ratio

s taken as γ = 5 / 3 . The analytical term L ex ( U i ) is obtained us-

ng Mathematica. A periodic, two-dimensional domain with unit

ength along x and y is considered. Fig. 2 (a) shows the error as

 function of the grid spacing 
x for the number of grid points

arying from 16 × 16 to 128 × 128; the number of grid points is

he same along x and y for all the cases. The time step is specified

s 
t = 0 . 001 . The order convergence is observed to be greater

han 4; the solutions are almost 5th order, except between the two

nest grids (64 × 64 and 128 × 128). Examining the electrostatic

ource term, (17a) , we note that n e ≡
∑ 

Z αn α = Zn for n f = 1 , and

hus it reduces to 

 

elec ( U ) = 

[
0 , 0 , ZT e n ∇ · u 

]T 
. (31) 

hus, the error is dominated by the flux-divergence term ∇ · F

n (18) , which is discretized using the 5th-order MPWENO scheme

escribed in the previous section. 

We now consider a two-fluid case that verifies the imple-

entation of terms that involve multiple fluids. Smooth, two-

imensional equilibria for the two-fluid equations ( n f = 2 ) are de-

ived as follows. The two fluids are two distinct species, and the

nitial number densities are specified functions while the initial ve-

ocities are zero for both the fluids: 

 1 , 2 ( x, y, t = 0 ) ≡ n 

( 0 ) 
1 , 2 ( x, y ) , u 

( 0 ) 
1 , 2 

= 0 , (32)

 

( 0 ) 
1 ( x, y ) = 

{−2 cos ( 2 πx ) cos ( 4 πy ) + 3 log [ 5 + 2 cos ( 2 πx ) cos 

−2 [ −5 + log { 10 + 3 cos ( 4 πx ) cos ( 2 πy ) } ] 

 

( 0 ) 
2 ( x, y ) = 

{ 

10 − 3 log [ 5 + 2 cos ( 2 πx ) cos ( 4 πy ) ] 

1 

2 

[ −3 cos ( 4 πx ) cos ( 2 πy ) ] + 2 log [ 10 + 3 cos ( 4 πx )
he pressures P 1 , 2 ( x, y, t = 0 ) ≡ P ( 
0 ) 

1 , 2 ( x, y ) ar e deriv ed using Mathe-

atica such that they satisfy the equilibrium conditions: 

 

∂ x 
(
P ( 

0 ) 
α + Z αT e n 

( 0 ) 
α

)
∂ y 
(
P ( 

0 ) 
α + Z αT e n 

( 0 ) 
α

)
] 

= 

Z αT e 

n 

( 0 ) 
e 

[ 

n 

( 0 ) 
e ∂ x n 

( 0 ) 
α − n 

( 0 ) 
α ∂ x n 

( 0 ) 
e 

n 

( 0 ) 
e ∂ y n 

( 0 ) 
α − n 

( 0 ) 
α ∂ y n 

( 0 ) 
e 

] 

, α = 1 , 2 ,

(33) 

here n ( 
0 ) 

e = Z 1 n 
( 0 ) 
1 

+ Z 2 n 
( 0 ) 
2 

. Derivation of the pressure functions

nvolves solving the PDE given by (33) , and the constants of

ntegration are taken such that the resulting functions have no

onpositive values. We consider two cases, where the species are

elium ( Z 1 = 2 , m 1 = 4 ) and carbon ( Z 2 = 6 , m 2 = 12 ), the domain

s x, y ∈ [.0, 1). with periodic boundary conditions, and the number

ensities are 

 

( 0 ) 
1 ( x, y ) = 

{
1 + cos ( 2 πx ) cos ( 4 πy ) Case 1 

1 Case 2 

, (34a) 

 

( 0 ) 
2 ( x, y ) = 

⎧ ⎨ 

⎩ 

1 

2 

Case 1 

1 

2 

+ 

1 

4 

cos ( 4 πx ) cos ( 2 πy ) Case 2 

. (34b) 

We were unable to obtain real-valued pressure functions for a

ase where the number densities for both the fluids varied spa-

ially, and therefore, these two cases, where one of the number

ensities is constant, are necessary to verify our implementation.

he electron temperature T e and specific heat ratios for both flu-

ds are 1 and 5/3, respectively. The pressure functions that sat-

sfy (33) are 

 ) ] Case 1 

Case 2 

, (35a) 

Case 1 

( 2 πy ) ] Case 2 

. (35b) 

Since these are equilibrium cases, L ex ( U i ) ≡ 0 , and the error can

e measured by advancing (19) by one time step with the forward
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Fig. 3. Solution of the electrostatic shock tube problem: The solutions for the charged species (hydrogen, helium, and beryllium) agree well with the neutral gas solution. 
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Euler scheme: 

ε = ‖ L ( U ) ‖ 2 = 

1 


t 
‖ U 

n +1 − U 

n ‖ 2 . (36)

Fig. 2 (b) shows the error as a function of the grid spacing 
x ,

starting from a grid with 16 × 16 points to a grid with 256 × 256

points. The time step is specified as 
t = 0 . 0 0 0 01 . Since the elec-

trostatic source term (17a) has the same magnitude as the flux di-

vergence term ∇ · F , 4th-order convergence is observed. 

The two tests discussed above are sufficient to verify our dis-

cretization of the multifluid Eqs. (13), except the collisional terms,

and demonstrate the high-order convergence of the spatial dis-

cretization schemes. The single-fluid test verifies the discretization

of the flux term, while the two-fluid cases verify the discretization

of the electrostatic source term. These tests are repeated in the y –

z and x –z planes to complete the verification of all non-collisional

terms in (13). 

Nonoscillatory behavior. The Sod shock tube test [50,52] is a one-

dimensional Riemann problem that is used to test the nonoscilla-

tory behavior of compressible gasdynamics codes. The initial so-

lution is a discontinuity that has a high-density, high-pressure

fluid on one side and a low-density, low-pressure fluid on the

other side. As the simulation progresses, the initial discontinu-

ity decomposes into a rarefaction wave, a contact discontinuity,

and a shock wave. While the smooth problems discussed above

test the accuracy and convergence properties of the spatial dis-

cretization, the Riemann problem tests the ability of an upwind

discretization scheme to resolve the characteristic wavespeeds cor-

rectly and yield nonoscillatory solutions. In this section, we con-

sider an electrostatic shock tube problem by noting that the LHS

of (13) is identical to the compressible Euler equations for neutral

gases [50] , if the hydrodynamic pressure in the latter is replaced by

the augmented pressure (sum of the hydrodynamic pressure and

electron pressure). Eq. (18) is thus solved with a zero RHS on

a one-dimensional domain x ∈ [0, 1] with inviscid wall boundary

conditions at both ends. The number of fluids is n f = 1 , and the

initial solution is specified as 

{ ρ, P ∗} = 

{{ 1 , 1 } x ≤ 0 . 5 

{ 0 . 125 , 0 . 1 } x > 0 . 5 

, u = 0 , P = P ∗ − ZT e 

m 

ρ. 

(37)
e consider four cases, each with a different species: 

eutral gas Z = 0 , m ∈ R 

+ 

ydrogen Z = 1 , m = 1 

elium Z = 2 , m = 4 

eryllium Z = 4 , m = 9 

, (38)

nd the electron temperature T e and the specific heat ratio γ are

et to 0.01 and 5/3, respectively. Fig. 3 shows the density and pres-

ure at t = 0 . 15 for solutions obtained on a grid with 256 points.

he CFL number for all the simulations are set to σ = 0 . 9 . The so-

utions obtained with the charged species (hydrogen, helium, and

eryllium) agree well with the neutral gas solution, as expected.

his case demonstrates that the characteristic-based MPWENO5

patial discretization described in the previous section is able to

ield nonoscillatory solutions for flows with strong discontinuities.

.2. Collisional terms 

We now verify our implementation of the collisional source

erms by comparing them with previous results in the literature.

ince these terms do not involve any spatial gradients, “zero-

imensional” cases with uniform flow variables are sufficient for

heir verification. We consider two setups that are identical to

hose solved by Rambo and Procassini [44] : The thermal equili-

ration of two fluids at initially different temperatures, and the

lowing down of a fluid stream due to the collisional interac-

ions with a background fluid. The results presented in Rambo

nd Procassini are in terms of the physical variables (with dimen-

ions), and therefore, the discussion and figures in this section

nvolve these variables (obtained by multiplying the nondimen-

ional variables solved by EUCLID by the corresponding reference

uantity). The primary reference quantities for the cases reported

ere are 

 ref = 1 . 67 × 10 

−24 g ( proton mass ) , n ref = 1 × 10 

20 cm 

−3 

 ref = 0 . 1 cm ( 1 mm ) , T ref = 1 . 602 × 10 

−9 ergs ( 1 keV ) , 

 = 4 . 803 × 10 

−10 statcoulomb ( elementary charge ) , 

nd, therefore, the derived reference quantities are obtained

rom (10) are: 

 ref = 3 . 095 × 10 

7 cm / s , ρref = 1 . 67 × 10 

−4 g / cm 

−3 , 

 ref = 3 . 23 × 10 

−9 s , P ref = 1 . 602 × 10 

11 Ba . 

he specific heat ratio for all fluids is specified as γα = 5 / 3 . 
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Fig. 4. Thermal equilibration of two fluids at initially different temperatures. An excellent agreement is observed with results in the literature [44] . 
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The first test considers two carbon fluids ( n f = 2 , Z { 1 , 2 } = 6 , and

 { 1 , 2 } = 12 ), and two cases with the following initial solutions (in

erms of the nondimensional variables): 

ase 1 : n 1 = n 2 = 1 , u 1 = u 2 = 0 , T 1 = 1 , T 2 = 0 . 25 

ase 2 : n 1 = 0 . 1 , n 2 = 1 , u 1 = u 2 = 0 , T 1 = 1 , T 2 = 0 . 25 

.

(39) 

he domain is x = [ 0 , 1 ] with periodic boundary conditions, and it

s discretized by 8 grid points. The final time for the simulation

s specified as t f = 0 . 00155 , which corresponds to a physical time

f ∼ 5 ps. A CFL of σ = 0 . 0 0 05 is specified, where σ is given by

27) ; this value is obtained by “trial-and-error” to ensure that the

quilibration time scale is resolved. Fig. 4 shows the evolution of

he temperatures of both the fluids: in both cases, the two fluids

quilibrate to the density-weighted mean of the initial tempera-

ures ( n 1 T 1 + n 2 T 2 ) / ( n 1 + n 2 ) . An excellent agreement is observed

ith prior results [44] . 
The second test considers two carbon fluids as well, and two

ases with the following initial solutions (in terms of the nondi-
ensional variables) are solved: 

ase 1 : n 1 = n 2 = 1 , u 1 = 2 . 1166 , u 2 = 0 , T 1 = T 2 = 0 . 5 

ase 2 : n 1 = 0 . 1 , n 2 = 1 , u 1 = 2 . 1166 , u 2 = 0 , T 1 = T 2 = 0 . 5 
. 

(40) 

The nondimensional u specified above corresponds to a phys-

cal velocity of 6.55 × 10 7 cm/s. The domain is x = [ 0 , 1 ] with pe-

iodic boundary conditions, and it is discretized by 8 grid points.

he final time is specified as t f = 0 . 031 , which corresponds to a

hysical time of ∼ 100 ps. A CFL of σ = 0 . 01 is specified to resolve

he frictional time scale. Fig. 5 (a) and (b) show the evolution of

he velocities and temperatures of both the fluids for Case 1. The

rst fluid α = 1 slows down and accelerates the second fluid α = 2

ue to the inter-fluid friction; the velocities for both the fluids con-

erge to the mean value. The frictional forces also result in heating

oth the fluids, as is observed by the increase in the temperatures

y a factor of ∼ 10. Fig. 5 (c) and (d) show the evolution of the ve-

ocities and temperatures for Case 2, where the density of the first

uid is 10 times lower. The velocities of both the fluids converge

o the density-weighted mean. The evolution of the temperatures

hows the rapid heating of the first (lower density) fluid due to the

riction, followed by cooling due to thermal equilibration, while the

econd (higher density) fluid experiences a more gradual heating
ue to friction and thermal equilibration. In both these cases, our

esults agree well with those previously published [44] . 

. Results 

In this section, we use EUCLID to simulate multifluid flows

hat are representative of laser-induced plasma experiments. We

onsider the interactions of counterstreaming plasmas in vacuum

nd in the presence of a gas fill. Both one-dimensional and two-

imensional cases are simulated. The simulations reported in these

ection use the following primary reference quantities that corre-

pond to the physical setup of HEDP experiments [4,6,7,53] : 

 ref = 1 . 67 × 10 

−24 g ( proton mass ) , 

 ref = 9 . 03 × 10 

21 cm 

−3 ( n crit ) , 

 ref = 0 . 1 cm ( 1 mm ) , T ref = 1 . 602 × 10 

−9 ergs ( 1 keV ) , 

 = 4 . 803 × 10 

−10 statcoulomb ( elementary charge ) , 

here n crit is the critical plasma density above which the fluid be-

omes opaque to electromagnetic radiation [54] . The derived refer-

nce quantities are obtained from (10) , and they are: 

 ref = 3 . 095 × 10 

7 cm / s , ρref = 1 . 51 × 10 

−2 g / cm 

−3 , 

 ref = 3 . 23 × 10 

−9 s , P ref = 1 . 447 × 10 

13 Ba . 

he subsequent discussions in this section describe the nondimen-

ional variables that are solved for by EUCLID; they can be multi-

lied by these reference quantities to obtain their physical values

ith units. The specific heat ratio for all species in the simulations

resented in this section is specified as γα = 5 / 3 . 

The initial solution in the cases discussed here involve fluids

hat exist with a specified density only within a part of the do-

ain. This is implemented using a “smoothed slab” function that

s defined in one spatial dimension as 

( x ; δx , x min , x max ) = e 
x 
δx 

[(
e 

x min 
δx + e 

x 
δx 

)−1 

−
(

e 
x max 
δx + e 

x 
δx 

)−1 
]
. 

(41) 

This function attains unit value inside ( x min , x max ), smoothly

ransitions to 0 with a width δx , and is zero outside [ x min , x max ].

he transition width δx is specified as a small number; however

e must caution the reader that very low values for δx results in

umerical overflow/underflow while evaluating ϒ( x ). In the parts
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Fig. 5. Frictional slowing of one fluid with respect to a background fluid with an initially nonzero relative velocity. An excellent agreement is observed with results in the 

literature [44] . 
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of the domain where a fluid doesn’t exist, its density is specified

as a small number (“numerical vacuum”) since zero density will

result in numerical exceptions. This number, n vac , should be small

enough such that the fluid doesn’t significantly affect the overall

flow physics in these regions (where it does not exist), yet the

numerical discretization should be able to maintain the positivity

of density and pressure. While the WENO algorithm is not strictly

positivity-preserving, our use of the monotonicity-preserving lim-

its on WENO and the robust characteristic-based reconstruction (as

described in Section 3 ) allowed the numerical vacuum to be spec-

ified as n vac = 10 −14 . 

The first example we consider is the one-dimensional inter-

action of two counterstreaming plasmas. The domain is x ∈ [0,

1], and we consider two fluids n f = 2 . The initial solution is as

follows: 

n α( x, t = 0 ) = n vac + 

˜ n αϒ( x ; δx,α, x min ,α, x max ,α ) 
T α( x, t = 0 ) = 1 , u α( x, 0 ) = 0 

, α = 1 , 2 , 

(42)
 i  
here 

 min , 1 = −1 , x max , 1 = 0 . 2 , x min , 2 = 0 . 8 , x max , 2 = 2 , 

δx, { 1 , 2 } = 0 . 005 , 

nd n vac = 10 −14 . This represents a setup where fluid α = 1 is a
ocalized slab in x ∈ [0, 0.2], and fluid α = 2 is a localized slab in
 ∈ [0.8, 1] with vacuum in between (see the top left plots in Figs. 6
nd 7 ). The electron temperature is T e = 0 . 5 , and we consider two
ymmetric cases (hydrogen–hydrogen and carbon–carbon interac-
ions): 

ase 1 (hydrogen − hydrogen) : m { 1 , 2 } = 1 , Z { 1 , 2 } = 2 , ˜ n { 1 , 2 } = 0 . 5 

ase 2 (carbon − carbon) : m { 1 , 2 } = 12 , Z { 1 , 2 } = 6 , ˜ n { 1 , 2 } = 0 . 1 
. 

he boundary conditions are as follows: An inviscid wall boundary

s imposed at x = 0 , and outflow is imposed at x = 1 for fluid

= 1 , while outflow is imposed at x = 0 , and inviscid wall bound-

ry is imposed at x = 1 for fluid α = 2 . The domain is discretized

y a grid with 256 points, and the final time for the simulations

s t f = 0 . 4 . The CFL number for Case 1 (hydrogen–hydrogen)
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Fig. 6. Interpenetration of two hydrogen streams: The left column shows the number density n α (solid lines) and the pressure P α (dashed line), and the right column shows 

the velocity u α . The red lines correspond to α = 1 , and the blue lines correspond to α = 2 . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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as specified as 0.5, while that for Case 2 (carbon–carbon) was

pecified as 0.05; these values ensure that the collisional source

erms are also linearly stable at the computed time step size. 

Fig. 6 shows number density n {1,2} and pressure P {1,2} in the

eft column and the velocity u {1,2} in the right column for the

ydrogen–hydrogen interaction (Case 1), where successive rows

how the solution at simulation times of 0 (initial solution), 0.1,

.23, and 0.4 (final time). The interaction can be described as fol-

ows. At t = 0 (initial solution), each fluid is piled up at either

nd of the domain. As the simulation progresses, the fluids expand

rom either side of the domain, and by t = 0 . 1 , they interpenetrate

ach other. At this time, the velocity plot shows unimpeded expan-

ion for each hydrogen fluid as they leave the domain. However,

y t = 0 . 23 , the friction between the fluids results in the outflow-

ng fluid at each end of the domain getting pulled back by the

ominant fluid that is flow in the opposite direction. For exam-

le, at x → 0, the fluid α = 2 has assumed the positive (rightward)

elocity of the dominant fluid α = 1 because it is being pulled

ack by it. At this time, the region between x ∼ 0.3 and x ∼ 0.7 ex-

ibits a multifluid counterstreaming flow. The pressure and density
lots show a sharper gradient compared to a smooth expansion at

 = 0 . 1 (in the region x < 0.2 for α = 2 and x > 0.8 for α = 1 ) indi-

ating the push-back from the dominant fluid. Finally, at t = 0 . 4 ,

hile each fluid has been pushed back by the other at either end

f the domain, the friction results in the velocities converging to

 single value at each spatial location, and thus, this becomes a

single-fluid” flow that can be solved by a multispecies, single-fluid

ode. 

Fig. 7 shows the solution for the carbon–carbon interaction

Case 2), where the same quantities are plotted at the same

imulation times. Qualitatively, a similar behavior is observed;

owever, since carbon has a higher atomic number Z α , the in-

eractions (electrostatic and collisional forces) are significantly

tronger. As a result, the fluids at either end of the domain are

nable to reach and exit the other end of the domain. Even at an

arly time of t = 0 . 1 , while each fluid interpenetrates each other

nd flow in opposite directions in the region between x ∼ 0.2 and

 ∼ 0.8, the friction forces result in a small region adjacent to the

xpansion front where the expanding fluid is getting pushed back

y the dominant fluid (for example, in the region 0.15 < x < 0.21
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Fig. 7. Interpenetration of two carbon streams: The left column shows the number density n α (solid lines) and the pressure P α (dashed line), and the right column shows 

the velocity u α . The red lines correspond to α = 1 , and the blue lines correspond to α = 2 . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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for the fluid α = 2 ). At t = 0 . 23 , the pressure and number density

gradients and the velocity show the push-back each fluid is facing

from the other. Finally, by t = 0 . 4 , the fluids have converged to a

“single fluid” with identical velocities. 

We now consider a two-dimensional interaction of two counter-

streaming fluids. The domain is x ∈ [0, 1], y ∈ [0, 2], and the initial

solution for the two fluids is: 

n α( x, y, t = 0 ) = n vac + 

˜ n αϒ( x ; δx,α, x min ,α, x max ,α ) 
T α( x, y, t = 0 ) = T 0 + 

˜ T αϒ( y ; δy,α, y min ,α, y max ,α ) 
u α( x, y, t = 0 ) = v α( x, y, t = 0 ) = 0 

, α = 1 , 2 , 

(43)

where 

x min , 1 = −1 , x max , 1 = 0 . 2 , x min , 2 = 0 . 8 , x max , 2 = 2 , 

δx, { 1 , 2 } = 0 . 005 , 

y min , 1 = y min , 2 = 0 . 8 , y max , 1 = y max , 2 = 1 . 2 , δy, { 1 , 2 } = 0 . 02 , 

˜ n { 1 , 2 } = 0 . 08 , T 0 = 1 , ˜ T { 1 , 2 } = 4 , 
nd n vac = 10 −14 is the numerical “vacuum”. Along the x di-

ension, the density variation is identical to that in the one-

imensional examples discussed above, and this is shown in

ig. 8 (a). Both the fluids are carbon ( Z { 1 , 2 } = 6 and m { 1 , 2 } = 12 ), and

e refer to the first fluid α = 1 as “carbon-left ” (red curve) and the

econd fluid α = 2 as “carbon-right ” (blue curve). Along the y di-

ension, the temperature towards the center of the domain in this

imension (0.8 ≤ y ≤ 1.2) is specified to be 5 times hotter than the

emperature near the boundaries ( y < 0.8, y > 1.2). Fig. 8 (b) shows

his temperature variation, which is identical for both fluids. This

epresents a situation where the two localized slabs of plasmas

t each end of the domain are hotter in the middle than at the

dges. This case is representative of the laser-induced plasma ex-

eriments where high-energy laser beams heat the carbon foils

round their middle, while the edges remain cooler. The electron

emperature is specified as T e = 0 . 5 . The boundary conditions are

imilar to that of the one-dimensional cases: Inviscid wall bound-

ry is imposed at x = 0 for carbon-left and at x = 1 for carbon-

ight , and outflow is specified at x = 1 for carbon-left and at x = 0
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Fig. 8. Initial solution for the two-dimensional two-fluid (carbon–carbon) interpenetration case: The red mesh in the left figure is the number density of the first carbon 

fluid α = 1 ( carbon-left ), while the blue mesh is the number density of the second carbon fluid α = 2 ( carbon-right ). The right figure shows the initial temperature variation 

along y for both the fluids. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Evolution of the number density for the two-dimensional carbon–carbon interpenetration case: The red mesh is carbon-left , and the blue mesh is carbon-right . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. Evolution of the x -velocity ( u ) for the two-dimensional carbon–carbon interpenetration case: The red mesh is carbon-left , and the blue mesh is carbon-right . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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for carbon-right . Outflow boundaries are specified for both fluids

at y = 0 , 2 . 

The final time for the simulation is t f = 0 . 35 , and CFL is spec-

ified as σ = 0 . 05 ; this ensures that the time step size resolves

the collisional terms. Fig. 9 shows the evolution of the number

densities for the two fluids at t = { 0 . 08 , 0 . 14 , 0 . 20 , 0 . 35 } , while

Fig. 10 shows the evolution of u , the x -component of the veloc-

ity. In these figures, the red surfaces correspond to carbon-left ,

and the blue surfaces correspond to carbon-right . Along the x -

dimension, the overall dynamics is similar to that in the one-

dimensional example discussed above. The two fluids start ex-

panding towards each other, as can be observed at t = 0 . 08 .

The expansion is faster near the center of the domain along y

because of the higher temperature specified in that region. In

Figs. 9 (a) and 10 (a), the expansion front in 0.8 ≤ y ≤ 1.2 leads that

near the y -boundaries. At t = 1 . 4 , the two fluids have interpene-
rated into each other, and this is shown in Fig. 9 (b). Fig. 10 (b)

hows that both the fluids are expanding in the large majority

f the domain; however, they are also starting to get pushed

ack by the other fluid. For example, carbon-left is being pushed

ack by carbon-right near x = 1 , and this is more pronounced for

.8 ≤ y ≤ 1.2 due to the higher temperature. The inter-fluid fric-

ion prevents each fluid from reaching the other end of the do-

ain, and by t = 0 . 2 , they get pushed back. Fig. 9 (c) shows the

harp gradient in the number density that develops as a result

f this push-back, and Fig. 10 (c) shows the velocities converging

o the same value near the x -boundaries, while counterstream-

ng flows exist towards the center of the domain 0.2 < x < 0.8.

or example, near x = 0 , carbon-right is being carried right-ward

towards x = 1 ) by carbon-left . The two fluids assume identi-

al velocities by t = 0 . 35 , and they essentially become a single
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Fig. 11. Evolution of the number density for the two-dimensional interaction of two carbon fluids in the presence of helium gas fill: The red and blue meshes show the 

number densities for carbon-left ( α = 1 ) and carbon-right ( α = 2 ), respectively, while the green mesh shows the number density for helium-fill ( α = 3 ). (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 12. Evolution of the pressure and number density for the two-dimensional interaction of two carbon fluids in the presence of helium gas fill along the x -dimension 

at y = 1 : The red and blue curves correspond to carbon-left and carbon-right , respectively, and the green curve corresponds to helium-fill . The solid lines show the number 

density, and the dashed lines show the pressure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Finally, we consider the two-dimensional interaction of two

counterstreaming fluids in the presence of a gas fill. The details of

the setup is identical to that in the previous example of the two-

dimensional interaction of two carbon fluids with the addition of

helium as the gas fill. Thus, the number of fluids is n f = 3 , and

the properties of the third fluid are Z 3 = 2 and m 3 = 4 . The initial

solution for the third fluid, which we refer to as helium-fill , is as

follows: 

n 3 ( x, y, t = 0 ) = n vac + 

˜ n 3 ϒ( x ; δx, 3 , x min , 3 , x max , 3 ) , 

T 3 ( x, y, t = 0 ) = T 0 , 3 = 0 . 25 , u 3 ( x, y, t = 0 ) = v 3 ( x, y, t = 0 ) = 0 , 

(44)

where ˜ n 3 = 10 −4 is the fill gas density, and 

δx, 3 = 0 . 005 , x min , 3 = 0 . 22 , x max , 3 = 0 . 78 . 

Thus, compared with the previous setup, the vacuum in between

the two carbon fluids in the initial solution is filled by a low-

density helium gas. The initial temperature for the two carbon flu-

ids vary along the y -dimension as before, as shown in Fig. 8 (b), and

the initial temperature for the helium fluid is uniform. Fig. 11 (a)

shows the number density at t = 0 , where the red and blue

meshes correspond to carbon-left and carbon-right , respective, and

the green mesh corresponds to helium-fill . The final time for the

simulation is specified as t f = 0 . 4 , and the CFL is specified as

σ = 0 . 05 . The boundary conditions for carbon-left and carbon-right
re same as before; outflow boundaries are specified for helium-fill

verywhere. 

Fig. 11 shows the number density for the three fluids at various

olution times, while Fig. 12 shows the number density and pres-

ure variation along x at y = 1 . As the two carbon fluids expand

rom either end of the domain, they drag the helium gas fill along

ith them, and this is observed in the solutions at t = 0 . 05 and

 = 0 . 12 . Fig. 13 shows the velocity along the x -dimension ( u ) at

 = 1 , and the solution at t = 0 . 12 shows that helium-fill assumes

he velocity of the dominant carbon fluid ( carbon-left in x < 0.5 and

arbon-right in x > 0.5), while the two carbon fluids are expanding

nd interpenetrating. By t = 0 . 2 , a large amount of helium-fill has

ccumulated in the center of the domain, and the velocity varia-

ion indicates that it has started expanding outwards through the

wo carbon fluids. Meanwhile, similar to the behavior observed in

he previous two-fluid cases, the carbon fluids from either end

re pushed back from the other boundary by the dominant fluid

t that boundary, and although they are counterstreaming around

he center of the domain, they have converged to a single veloc-

ty near the boundaries ( x < 0.3 and x > 0.7). The two carbon flu-

ds converge completely to a single velocity by t = 0 . 3 , and each

uid has been pushed back by the other at each end of the do-

ain; however, helium-fill streams through the carbon fluids to ex-

and outward, and the velocity variation at t = 0 . 3 shows signifi-

ant helium–carbon counterstreaming. Finally, at t = 0 . 4 , all three

uids converge to a single velocity field and essentially become

ne fluid. 
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Fig. 13. Evolution of the x -velocity ( u ) for the two-dimensional interaction of two carbon fluids in the presence of helium gas fill along the x -dimension at y = 1 : The red 

and blue curves correspond to carbon-left and carbon-right , respectively, and the green curve corresponds to helium-fill . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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. Conclusions 

This paper reports the initial development of EUCLID, a multi-

uid code for simulating plasma interpenetration. The governing

quations are the inviscid Euler equations, expressed as the

onservation of mass, momentum, and energy, for each ion fluid.

he formulation allows the partitioning of the same species into

ultiple fluids or streams. The fluids interact through electrostatic

orces and collisional terms that include friction and thermal

quilibration (both ion–ion and electron–ion). The electrons are

ssumed to be isothermal and inertia-less, and the plasma is

ssumed to be quasi-neutral; thus, the fluid equations for the

lectrons and the Poisson equation for the electrostatic potential

eed not be solved. The governing equations are discretized

sing a conservative finite-difference method, and the 5th-order

onotonicity-Preserving WENO scheme is used for the upwind

iscretization of the hyperbolic flux. Currently, the explicit 4th-

rder Runge–Kutta method is used for time integration. EUCLID is

erified and its accuracy, convergence, and nonoscillatory behavior

s demonstrated using several benchmark flow problems and the

ethod of manufactured solutions, and these are reported in

his paper. Finally, we simulate one- and two-dimensional flows

hat are representative of laser–induced plasma experiments–the

nteractions of counterstreaming fluids in vacuum as well as in the

resence of a gas fill. 

EUCLID is a “work-in-progress”, and this paper is intended as

 description of the basic algorithm. One of the challenges with

ur current approach results from using an explicit time integra-
ion method. The time scales of the collisional terms (both friction

nd thermal equilibration) are often faster than the convective and

coustic time scales for our applications. In the results reported

n this paper, a very low CFL number was needed to resolve these

ime scales, especially for interactions between heavier species like

arbon. More physically-relevant simulations will involve heavier

pecies such as gold ( Z = 40 , m = 197 ) resulting in faster colli-

ional time scales. Thus, the implementation of implicit–explicit

IMEX) time integration methods [55–57] to integrate the source

erms implicitly is being investigated. In addition, several aspects

f the physical model and their improvements are areas of active

esearch. Examples include removing the assumption of isother-

al electrons and solving the electron energy equation along with

he ion fluid equations and the inclusion of heat source terms in

he energy equations to simulate the continued localized heat-

ng due to laser beams. Finally, counterstreaming plasmas result

n the growth of kinetic instabilities that have a significant effect

n the solution. A kinetic simulation of these instabilities within

 fluid code is computationally intractable; however, we are in-

estigating the development of collisional kinetic models [58] that

ill appear as kinetic friction and heating terms in the fluid

quations. 
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e 

mension d ; the purpose is to provide a brief but sufficient description 

re encouraged to refer to the original publications [4 8,4 9] for a detailed 

g WENO (MPWENO5) scheme described here computes a left-biased 

 the values of the flux function at grid points i − 2 e d , · · · , i + 2 e d . This 

ation by providing the flux functions at the grid points i + 3 e d , · · · , i −
 approximation can be computed as: 

(A.1) 

(A.2a) 

(A.2b) 

(A.2c) 

(A.3a) 

(A.3b) 

(A.3c) 

(A.3d) 

 optimal weights c l by the smoothness indicators S l , and ε = 10 −6 is a 

the solution is smooth, ω l → c l , and (A.1) becomes 

(A.4) 

es, the weights ω l corresponding to the stencils containing the discon- 

 from the discontinuity is computed. 

ring that the final approximation is within the monotonicity-preserving 

(A.5a) 

(A.5b) 

(A.5c) 

(A.6) 

(A.7a) 
Appendix A. Monotonicity-preserving WENO5 (MPWENO5) schem

This section summarizes the reconstruction procedure along di

that allows the exact reproducibility of our algorithm. The readers a

description of this method. The fifth-order monotonicity-preservin

approximation to the flux primitive at the interface i + 

1 
2 e d , given

same procedure can be used to compute the right-biased approxim

e d as the inputs (note the reverse ordering). The fifth-order WENO

f WENO5 
i + 1 2 e d 

= 

3 ∑ 

l=1 

ω l f 
( l ) 

i + 1 2 e d 
; ω l = 

ζl ∑ 3 
m =1 ζm 

, l = 1 , 2 , 3 , 

where 

f ( 
1 ) 

i + 1 2 e d 
= 

1 

3 

f i −2 e d 
− 7 

6 

f i −e d 
+ 

11 

6 

f i , 

f ( 
2 ) 

i + 1 2 e d 
= −1 

6 

f i −e d 
+ 

5 

6 

f i + 

1 

3 

f i + e d , 

f ( 
3 ) 

i + 1 2 e d 
= 

1 

3 

f i + 

5 

6 

f i + e d −
1 

6 

f i +2 e d 

are the three third-order approximations of f 
i + 1 

2 
e d 

, and 

ζl = 

c l 
ε + S l 

, l = 1 , 2 , 3 ; c 1 = 

1 

10 

, c 2 = 

6 

10 

, c 3 = 

3 

10 

;

S 1 = 

13 

12 

(
f i −2 e d 

− 2 f i −e d 
+ f i 
)2 + 

1 

4 

(
f i −2 e d 

− 4 f i −e d 
+ 3 f i 

)2 
, 

S 2 = 

13 

12 

(
f i −e d 

− 2 f i + f i + e d 
)2 + 

1 

4 

(
f i −e d 

− f i + e d 
)2 

, 

S 3 = 

13 

12 

(
f i − 2 f i + e d + f i +2 e d 

)2 + 

1 

4 

(
f i − 4 f i + e d + 3 f i +2 e d 

)2 
, 

where ζ l are the WENO weights that are computed by scaling the

small parameter to prevent division by zero. In the regions where 

f WENO5 
i + 1 2 e d 

= 

3 ∑ 

l=1 

c l f 
( l ) 

i + 1 2 e d 
= 

1 

30 

f i −2 e d 
− 13 

60 

f i −e d 
+ 

47 

60 

f i + 

27 

60 

f i + e d 

− 1 

20 

f i +2 e d 
, 

which is the fifth-order approximation of f 
i + 1 

2 
e d 

. Near discontinuiti

tinuity go to zero, and a nonoscillatory approximation biased away

The MPWENO5 approximation is obtained from f WENO5 

i + 1 
2 

e d 
by ensu

bounds. Defining the following functions: 

sign ( x ) = 

{
1 x ≥ 0 

−1 x < 0 

, 

minmod ( x, y ) = 

1 

2 

( sign ( x ) + sign ( y ) ) min ( | x | , | y | ) , 

median ( x, y, z ) = x + minmod ( y − x, z − x ) , 

the monotonicity-preserving approximation is expressed as: 

f i + 1 2 e d 
= median 

(
f WENO5 
i + 1 2 e d 

, f min 
i + 1 2 e d 

, f max 
i + 1 2 e d 

)
. 

The minimum and maximum bounds are computed as 

f min 
i + 1 2 e d 

= max 

[ 
min 

(
f i , f i + e d , f 

med 
i + 1 2 e d 

)
, min 

(
f i , f 

UL 
i + 1 2 e d 
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(A.7b) 

w

(A.8a) 

(A.8b) 

(A.8c) 

a d an estimate allowing for a large curvature (LC), respectively. In our 

i e 

d (A.9) 

T or our applications, which involves density and pressure varying from 

O rameters and their effect on the solution [49] . 

A

a [51] , is provided in this section. The eigenvalues of the flux Jacobian 

∂ ex α are: 

� (B.1a) 

� (B.1b) 

� (B.1c) 
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a w. In these expressions, 
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re the median value of the flux, an upper limit based on υ, an

mplementation, we set υ = 2 , β = 4 , and d LC 
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hese choices for the monotonicity-preserving scheme work well f

 ( 1 ) to O 
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)
, based on the discussion on the role of these pa

ppendix B. Eigenstructure 

The complete eigenstructure of (13), derived using Mathematic
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Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at 10.1016/j.compfluid.2019.04.012 . 
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