High-Order Semi-Implicit Time Integration Methods for Multiscale Advective Physics

Presented at University of Zaragoza (Online)

Debojyoti Ghosh

Center for Applied Scientific Computing

October 25, 2022

LLNL-PRES-841756

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Time Scales in Complex Physics Simulations

$$\begin{array}{ll} \textit{Model ODE} & \frac{dy}{dt} = \lambda_1 y + \lambda_2 y + \dots + \lambda_n y; & \begin{array}{ll} \lambda_i \in \mathbb{Z} \\ \lambda_1 < \lambda_2 < \dots < \lambda_n \end{array}$$

Complex physics are characterized by a large range of temporal scales

Which time scales do we want to resolve? (Usually, some of them)

Explicit vs. Implicit Time Integration

Motivation for Implicit-Explicit (IMEX) Approach

Explicit time-integration constrained by *fastest time scale in the model*

- Simple to implement; very scalable
- Eigenvalues of RHS must lie within stability region of time integrator
- Inefficient when resolving slow dynamics

Implicit time-integration allows time steps determined by the physics

- Unconditional stability
- Requires solution to *nonlinear system of equations* (computational expense, scalability, preconditioning)
- Why pay for inverting/solving the terms we want to resolve?

IMEX: Best of both worlds?

Implicit-Explicit (IMEX) Time Integration

Resolve scales of interest; Treat implicitly faster scales

Semi-discrete ODE in time

Resulting from spatial discretization of PDE

$$\frac{d\mathbf{y}}{dt} = \mathcal{R}\left(\mathbf{y}\right)$$

IMEX time integration: *partition RHS* $\mathcal{R}\left(\mathbf{y}\right) = \mathcal{R}_{ ext{nonstiff}}\left(\mathbf{y}\right) + \mathcal{R}_{ ext{stiff}}\left(\mathbf{y}\right)$

Time step constrained by eigenvalues (time scales) of *nonstiff component of RHS*

Additive Runge-Kutta (ARK) Time Integrators

Multistage, high-order, conservative IMEX methods

Time step: From
$$t_n$$
 to $t_{n+1} = t_n + \Delta t$ $\frac{d\mathbf{y}}{dt} = \mathcal{R}_{\text{nonstiff}}(\mathbf{y}) + \mathcal{R}_{\text{stiff}}(\mathbf{y})$ Stage solutions $\mathbf{y}^{(i)} = \mathbf{y}_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \mathcal{R}_{\text{nonstiff}}(\mathbf{y}^{(j)}) + \Delta t \sum_{j=1}^{i} \tilde{a}_{ij} \mathcal{R}_{\text{stiff}}(\mathbf{y}^{(j)}), \quad i = 1, \cdots, s$ $\mathbf{y}_{n+1} = \mathbf{y}_n + \Delta t \sum_{i=1}^{s} b_i \mathcal{R}(\mathbf{y}^{(i)})$ Step completionKennedy & Carpenter, J. Comput. Phys., 2003

Butcher tableaux representation

s is the number of stages

Note: not any combination of an explicit *RK* and *DIRK* will work!

Lawrence Livermore National Laboratory LLNL-PRES-841756

Implicit Stage Solution

Requires solving nonlinear system of equations

Rearranging the stage solution expression:

$$\underbrace{\frac{1}{\Delta t \tilde{a}_{ii}} \mathbf{y}^{(i)} - \mathcal{R}_{\text{stiff}} \left(\mathbf{y}^{(i)} \right) - \left[\mathbf{y}_n + \Delta t \sum_{j=1}^{i-1} \left\{ a_{ij} \mathcal{R}_{\text{nonstiff}} \left(\mathbf{y}^{(j)} \right) + \tilde{a}_{ij} \mathcal{R}_{\text{stiff}} \left(\mathbf{y}^{(j)} \right) \right\} \right] = 0}_{\mathcal{F} \left(y \right) = 0}$$

Jacobian-free Newton-Krylov method (Knoll & Keyes, J. Comput. Phys., 2004):

Initial guess: $y_0 \equiv \mathbf{y}_0^{(i)} = \mathbf{y}_0^{(i-1)}$ Newton update: $y_{k+1} = y_k + \mathcal{J}(y_k)^{-1} \mathcal{F}(y_k)$ Preconditioned GMRES $\mathcal{JP}^{-1} \mathcal{P} \Delta y = \mathcal{F}(y_k)$

Action of the Jacobian on a vector approximated by *directional derivative*

$$\mathcal{J}(y_{k}) x = \left. \frac{d\mathcal{F}(y)}{dy} \right|_{y_{k}} x \approx \frac{1}{\epsilon} \left[\mathcal{F}(y_{k} + \epsilon x) - \mathcal{F}(y_{k}) \right]$$

Atmospheric Flows: Governing Equations

Exner Pressure and Potential Temperature	 COAMP5 (US Navy), MM5 (NCAR/PSU), NMM (NCEP) Does not conserve mass/momentum/energy 		
Mass, Momentum, and Potential Temperature	 WRF (NCAR), NUMA (NPS) Conserved mass and momentum, not energy Does not allow inclusion of true diffusion terms 		
Mass, Momentum, and Energy	 Examples? Conserves mass, momentum, and energy Allows inclusion of viscosity and thermal conduction 		
Atmospheric flows: small perturbations around hydrostatic balance	Perturbation form of governing equations		

Main Advantage? Allows the application of the vast number of CFD codes with minimal modifications

Fast Time Scales and Time Integration

Limited-area and mesoscale simulations require a nonhydrostatic model

Nonhydrostatic model introduces the acoustic mode
 O Sound waves much faster than flow velocities
 O Insignificant effect on atmospheric phenomena

Explicit Time Integration

- Time step size restricted by acoustic waves and/or vertical grid spacing
 Acoustic waves do not significantly impact any atmospheric phenomenon
- Split-explicit methods

Implicit Time Integration

- o Unconditionally stable
- Requires solutions to non-linear system or linearized approximation

IMEX Time Integrators for Atmospheric Flows

Horizontal-Explicit, Vertical-Implicit Methods

- Simulation domains are much larger horizontally than vertically
- Grids are typically *much finer* along the vertical (*z*) axis
- Terms with *z*-derivatives integrated implicitly, remaining terms integrated explicitly

dx = O(km)

IMEX Time Integrators for Atmospheric Flows

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{F} \left(\mathbf{u} \right) = \mathbf{S}$$

$$\downarrow$$

$$\nabla \cdot \mathbf{F} = \nabla \cdot \mathbf{F}_{slow} + \nabla \cdot \mathbf{F}_{fast}$$

Flux-Partitioned Methods

- Right-hand-side partitioned into linear stiff (fast) and nonlinear nonstiff (slow) components
- Formulation based on perturbations to the hydrostatic balance
- *First-order perturbations treated implicitly*; higher-order perturbations treated explicitly.

Developing an Atmospheric Flow Code

Collaborator: Emil Constantinescu (ANL) (2013-2016)

Develop a conservative, high-order finite-difference based on the compressible Euler equations (*conservation of mass, momentum, energy*)

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ e \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ (e+p)u \end{bmatrix} + \frac{\partial}{\partial y} \begin{bmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ (e+p)v \end{bmatrix} = \begin{bmatrix} 0 \\ \rho \mathbf{g} \cdot \hat{\mathbf{i}} \\ \rho \mathbf{g} \cdot \hat{\mathbf{j}} \\ \rho u\mathbf{g} \cdot \hat{\mathbf{i}} + \rho v\mathbf{g} \cdot \hat{\mathbf{j}} \end{bmatrix}$$

Balanced formulation for full quantities: Hydrostatic balance preserved to machine precision without writing equations in terms of perturbations

Flux-partitioning for IMEX time-integration: Isolate acoustic and gravity waves from convective mode

The work presented here is implemented in HyPar (<u>http://hypar.github.io/</u>) - C/C++ code for hyperbolic-parabolic PDEs.

Conservative Finite-Difference Schemes

Conservative finite-difference discretization of a 1D hyperbolic conservation law:

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{f}\left(\mathbf{u}\right)}{\partial x} &= 0 \quad \text{if} \quad \frac{\partial \mathbf{u}}{\partial t} + \frac{1}{\Delta x} \left(\mathbf{h}_{j+\frac{1}{2}} - \mathbf{h}_{j-\frac{1}{2}}\right) = 0 \quad \mathbf{f}\left(\mathbf{u}\left(x\right)\right) = \frac{1}{\Delta x} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} \mathbf{h}\left(\mathbf{u}\left(\xi\right)\right) d\xi \\ \frac{\partial \mathbf{u}}{\partial t} + \frac{1}{\Delta x} \left(\hat{\mathbf{f}}_{j+\frac{1}{2}} - \hat{\mathbf{f}}_{j-\frac{1}{2}}\right) = 0 \quad \text{if} \quad \mathbf{h}_{j+\frac{1}{2}} = \mathbf{h}\left(\mathbf{u}\left(x_{j+\frac{1}{2}}\right)\right) + \mathcal{O}\left(\Delta x^{p}\right) \end{aligned}$$
Spatially-discretized ODE in time

5th order WENO (*Jiang* & Shu, J. Comput. Phys., 1996) 5th order CRWENO (*Ghosh & Baeder, SIAM J. Sci. Comput., 2012*)

Characteristic-based Flux Partitioning (1)

Example: Periodic density sine wave on a unit domain discretized by *N*=80 points.

Eigenvalues of the CRWENO5 discretization

(u=0.1, a=1.0, dx=0.0125)

Semi-discrete ODE in time

$$\frac{\partial \mathbf{u}}{\partial t} = \hat{\mathbf{F}} \left(\mathbf{u} \right) = \begin{bmatrix} \mathcal{D} \otimes \mathcal{A} \left(u \right) \end{bmatrix} \mathbf{u}$$

Discretization operator (e.g.:WENO5, CRWENO5) Flux Jacobian

$$\operatorname{eig}\left[\frac{\partial \hat{\mathbf{F}}}{\partial \mathbf{u}}\right] = \operatorname{eig}\left[\mathcal{D}\right] \times \operatorname{eig}\left[\mathcal{A}\left(\mathbf{u}\right)\right]$$

Time step size limit for linear stability

Eigenvalues of the right-hand-side of the ODE are the **eigenvalues of the discretization operator** times the **characteristic speeds** of the physical system

Characteristic-based Flux Partitioning (2)

Splitting of the **flux Jacobian** based on its eigenvalues

$$\frac{\partial \mathbf{u}}{\partial t} = \hat{\mathbf{F}}(\mathbf{u}) = [\mathcal{D} \otimes \mathcal{A}(u)] \mathbf{u}
= [\mathcal{D} \otimes \mathcal{A}_{S}(u) + \mathcal{D} \otimes \mathcal{A}_{F}(u)] \mathbf{u}
= \hat{\mathbf{F}}_{S}(\mathbf{u}) + \hat{\mathbf{F}}_{F}(\mathbf{u})
\frac{"Slow" flux "Fast" Flux}{\mathbf{f}_{S}(\mathbf{u}) = \left[\begin{pmatrix} \frac{\gamma-1}{\gamma} \rho u \\ \frac{\gamma-1}{\gamma} \rho u^{2} \\ \frac{1}{2} \begin{pmatrix} \gamma-1 \\ \gamma \end{pmatrix} \rho u^{2} \\ \frac{1}{2} \begin{pmatrix} \gamma-1 \\ \gamma \end{pmatrix} \rho u^{3} \end{bmatrix}} \begin{array}{c} \text{Convective flux} \\ \text{(slow)} \\ \text{Acoustic} \\ \text{flux (fast)} \end{array} \mathbf{f}_{F}(\mathbf{u}) = \left[\begin{pmatrix} \frac{1}{\gamma} \rho u \\ \frac{1}{\gamma} \rho u^{2} + p \\ (e+p)u - \frac{1}{2} \begin{pmatrix} \gamma-1 \\ \gamma \end{pmatrix} \rho u^{3} \end{bmatrix}} \right] \begin{array}{c} \mathcal{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathcal{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\ u-a \end{bmatrix} \\ \mathbf{A}_{F} = \begin{bmatrix} 0 \\ u+a \\$$

Characteristic-based Flux Partitioning (3)

Example: Periodic density sine wave on a unit domain discretized by *N*=80 points (CRWENO5).

$$\frac{\partial \mathbf{F}_{S,F}\left(\mathbf{u}\right)}{\partial \mathbf{u}} \neq \left[\mathcal{A}_{S,F}\right]$$

Small difference between the eigenvalues of the complete operator and the split operator. (Not an error)

$$\operatorname{eig}\left[\frac{\partial \hat{\mathbf{F}}_{S}}{\partial \mathbf{u}}\right] \approx u \times \operatorname{eig}\left[\mathcal{D}\right] \quad \operatorname{eig}\left[\frac{\partial \hat{\mathbf{F}}_{F}}{\partial \mathbf{u}}\right] \approx \{u \pm a\} \times \operatorname{eig}\left[\mathcal{D}\right]$$

IMEX Time Integration with Characteristic-based Flux Partitioning (1)

Apply Additive Runge-Kutta (ARK) time-integrators to the split form

Stage values
(s stages)
$$\mathbf{U}^{(i)} = \mathbf{u}_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \hat{\mathbf{F}}_S \left(\mathbf{U}^{(j)} \right) + \Delta t \sum_{j=1}^{i} \tilde{a}_{ij} \hat{\mathbf{F}}_F \left(\mathbf{U}^{(j)} \right)$$
 $i = 1, \dots, s$ Step completion $\mathbf{u}_{n+1} = \mathbf{u}_n + \Delta t \sum_{i=1}^{s} b_i \hat{\mathbf{F}}_S \left(\mathbf{U}^{(i)} \right) + \Delta t \sum_{i=1}^{s} \tilde{b}_i \hat{\mathbf{F}}_F \left(\mathbf{U}^{(i)} \right)$ Non-linear system of equations

N

 $\hat{\mathbf{F}}_{F}(\mathbf{u}) = [\mathcal{D}(\omega) \otimes \mathcal{A}_{F}(\mathbf{u})]\mathbf{u}$ **Solution-dependent** weights for Nonlinear flux $\omega = \omega \left[\mathbf{F} \left(\mathbf{u} \right) \right]$ the WENO5/CRWENO5 scheme

Linearization of Flux Partitioning

Redefine the splitting as

$$\begin{aligned} \mathbf{F}_{F}\left(\mathbf{u}\right) &= \left[\mathcal{A}_{F}\left(\mathbf{u}_{n}\right)\right]\mathbf{u}\\ \mathbf{F}_{S}\left(\mathbf{u}\right) &= \mathbf{F}\left(\mathbf{u}\right) - \mathbf{F}_{F}\left(\mathbf{u}\right) \end{aligned}$$

Note: Introduces **no error** in the governing equation.

At the beginning of a time step:-
eig
$$\left[\frac{\partial \hat{\mathbf{F}}_S}{\partial \mathbf{u}}\right] = u \times \text{eig}\left[\mathcal{D}\right]$$

eig $\left[\frac{\partial \hat{\mathbf{F}}_F}{\partial \mathbf{u}}\right] = \{u \pm a\} \times \text{eig}\left[\mathcal{D}\right]$

Is F_F a good approximation at each stage?

Linearization of the WENO/CRWENO discretization:

 $\omega \left[\mathbf{F} \left(\mathbf{u}_{n} \right) \right] \overset{\mathbf{U}^{(1)}}{=} \mathbf{u}^{n}$ $\omega \left[\mathbf{F} \left(\mathbf{U}^{(1)} \right) \right] \overset{\mathbf{U}^{(2)}}{=} \mathbf{u}^{n} + \Delta t \tilde{a}_{21} \hat{\mathbf{F}}_{F} \left(\mathbf{U}^{(1)} \right) + \Delta t \tilde{a}_{22} \hat{\mathbf{F}}_{F} \left(\mathbf{U}^{(2)} \right)$ $+ \Delta t a_{21} \hat{\mathbf{F}}_{S} \left(\mathbf{U}^{(1)} \right)$ $\omega \left[\mathbf{F} \left(\mathbf{U}^{(2)} \right) \right] \overset{\mathbf{u}^{n+1}}{=} \mathbf{u}^{n} + \Delta t \tilde{b}_{1} \hat{\mathbf{F}}_{F} \left(\mathbf{U}^{(1)} \right) + \Delta t \tilde{b}_{2} \hat{\mathbf{F}}_{F} \left(\mathbf{U}^{(2)} \right)$ $+ \Delta t b_{1} \hat{\mathbf{F}}_{S} \left(\mathbf{U}^{(1)} \right) + \Delta t b_{2} \hat{\mathbf{F}}_{S} \left(\mathbf{U}^{(2)} \right)$

Within a stage, the nonlinear weights are kept fixed. **Example**: 2-stage ARK

method

IMEX Time Integration with Characteristic-based Flux Partitioning (2)

Linear system of equations for implicit stages:

$$\left[\mathcal{I} - \Delta t \tilde{a}_{ii} \mathcal{D} \otimes \mathcal{A}_F\left(\mathbf{u_n}\right)\right] \mathbf{U}^{(i)} = \mathbf{u}_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \hat{\mathbf{F}}_S\left(\mathbf{U}^{(j)}\right) + \Delta t \left[\mathcal{D} \otimes \mathcal{A}_F\left(\mathbf{u_n}\right)\right] \sum_{j=1}^{i-1} \tilde{a}_{ij} \mathbf{U}^{(j)},$$

 $i=1,\cdots,s$

Preconditioning (Preliminary attempts)

$$\mathcal{P} = \left[\mathcal{I} - \Delta t \tilde{a}_{ii} \mathcal{D}^{(1)} \otimes \mathcal{A}_F \left(\mathbf{u_n} \right) \right] \approx \left[\mathcal{I} - \Delta t \tilde{a}_{ii} \mathcal{D} \otimes \mathcal{A}_F \left(\mathbf{u_n} \right) \right]$$

First order upwind discretization Periodic boundaries ignored

- Block n-diagonal matrices
- Block tri-diagonal (1D)
- Block penta-diagonal (2D)
- Block septa-diagonal (3D)
- Jacobian-free approach: Linear Jacobian defined as a function describing its action on a vector
- Preconditioning matrix: Stored as a sparse matrix

ARK Methods (PETSc)

ARKIMEX 2c

- 2nd order accurate
- 3 stage (1 explicit, 2 implicit)
- L-Stable implicit part
- Large real stability of explicit part

ARKIMEX 2e

- 2nd order accurate
- 3 stage (1 explicit, 2 implicit)
- L-Stable implicit part

ARKIMEX 3

- 3rd order accurate
- 4 stage (1 explicit, 3 implicit)
- L-Stable implicit part

ARKIMEX 4

- 4th order accurate
- 5 stage (1 explicit, 4 implicit)
- L-Stable implicit part

Example: 1D Density Wave Advection (M $_{\infty}$ = 0.1)

Example: 1D Density Wave Advection (M_{\infty} = 0.1) Computational Cost

Number of function calls

Wall time

Number of function calls = (Number of time steps × number of stages) + Number of GMRES iterations (does not reflect cost of constructing preconditioning matrix and inverting it)

Example: 1D Density Wave Advection (M $_{\infty}$ = 0.01)

Lawrence Livermore National Laboratory LLNL-PRES-841756

Example: 1D Density Wave Advection (M_{\infty} = 0.01) Computational Cost

Number of function calls = (Number of time steps × number of stages) + Number of GMRES iterations (does not reflect cost of constructing preconditioning matrix and inverting it)

Example: 2D Low Mach Isentropic Vortex Convection

Freestream flow

$$\left. \begin{array}{c} \rho_{\infty} = 1 \\ p_{\infty} = 1 \\ u_{\infty} = 0.1 \\ v_{\infty} = 0 \end{array} \right\} M_{\infty} \approx 0.08$$

Vortex (Strength b = 0.5)

Grid: 32² points, **CRWENO5**

Example: 2D Low Mach Isentropic Vortex Convection

Time step size limited by the "slow" eigenvalues. 0

-1

Example: Vortex Convection (Computational Cost)

LINL-PRES-841756

Example: Inertia – Gravity Wave

- Periodic channel 300 km x 10 km
- No-flux boundary conditions at top and bottom boundaries
- Mean horizontal velocity of 20 m/s in a uniformly stratified atmosphere (M_∞≈ 0.06)
- Initial solution Potential temperature perturbation

Potential temperature perturbations at 3000 seconds (Solution obtained with **WENO5** and **ARKIMEX 2e**, 1200x50 grid points)

Eigenvalues of the right-hand-side operators

Example: Inertia – Gravity Wave

CFL	Wall time		Function counts		
	Absolute (s)	Normalized (/RK4)	Absolute	Normalized (/RK4)	
8.5	6,149	1.14	24,800	1.03	
13.6	4,118	0.76	17,457	0.73	
17.0	3,492	0.65	14,820	0.62	
20.4	2,934	0.54	12,895	0.54	

Fastest RK4

CFL ~ **1.0,** Wall time: **5400 s** # of function calls: **24000**

Cross-sectional potential temperature perturbations at 3000 seconds (y = 5 km) at CFL numbers 0.2 – 13.6

Lawrence Livermore National Laboratory LLNL-PRES-841756

Example: Rising Thermal Bubble

CFL	Wall time		Function counts		
	Absolute (s)	Normalized (/RK4)	Absolute	Normalized (/RK4)	
6.9	73,111	2.42	360,016	2.25	
34.7	22,104	0.73	111,824	0.70	
138.9	8,569	0.28	45,969	0.29	

Fastest RK4 CFL ~ 0.7, Wall time: 30,154 s, # of function calls: 160,000

- **Box** 1000 m²; **No-flux boundary conditions** on all boundaries
- Warm bubble initially at rest rises in a still ambient atmosphere

jonner (

800

700

RK 4 $\sigma_a \approx 0.7$

400

ARK 4 σ_a ≈ 139

500

х

0 Correction

300

200

600

Summary of Characteristic-Based Flux Partitioning for IMEX Methods

- Partitioning of flux separates the acoustic and entropy modes: Allows larger time step sizes (determined by flow velocity, not speed of sound).
- **Comparison** to alternatives
 - Vs. explicit time integration: Larger time steps → More efficient algorithm
 - Vs. implicit time integration: Semi-implicit solves a linear system without any approximations to the overall governing equations (as opposed to solving nonlinear system of equations or linearize governing equations in a time step).
- Disclaimer: This work is quite old (~7 years); there has been more interesting work since then!

Multirate Time Integration for Atmospheric Flows Background

Image source: http://frankgiraldo.wixsite.com/mysite/numa

NUMA – Nonhydrostatic Unified Model of the Atmosphere

- A scalable *high-order spectral-element code* for solving the Navier-Stokes and shallow water equations on a cube or a sphere (*part of the U.S. Navy NEPTUNE project*)
- **AMR-capable** (p4est/p6est library <u>http://p4est.github.io/</u>)
- **Collaborators:** Emil Constantinescu (ANL), Frank Giraldo (Naval Post. School), Michal Kopera (UC Santa Cruz)

- o Implicit-Explicit (IMEX) Time Integration: integrate acoustic terms implicitly, convective terms explicitly
- Multirate Time Integration: For AMR simulations, integrate refined elements with a "fast" method

Multirate Time Integration for Atmospheric Flows

Adaptive Mesh Refinement (AMR): Selective refining of the grid based on the solution

Single-rate time-integrator: Time step limited by refined elements

Multirate allows each cell to use the time-step suitable with local grid spacing

Illustration by: Emil Constantinescu (ANL)

Partitioning of the governing equation

Extrapolated Methods Overview

Building high-order methods from low-order method

$$\mathcal{I}_{\mathrm{LO}}$$

Low-order (computationally cheap) time integrator, for example, forward/backward Euler

$$T_{11} \equiv y^{n+1} \left(\mathcal{I}_{\text{LO}} \left[\Delta t \right] \right)$$

$$T_{21} \equiv y^{n+1} \left(\mathcal{I}_{\text{LO}} \left[\frac{\Delta t}{2} \right] \right)$$

$$T_{22}$$

$$T_{31} \equiv y^{n+1} \left(\mathcal{I}_{\text{LO}} \left[\frac{\Delta t}{3} \right] \right)$$

$$T_{32}$$

$$T_{33}$$

$$T_{41} \equiv y^{n+1} \left(\mathcal{I}_{\text{LO}} \left[\frac{\Delta t}{4} \right] \right)$$

$$T_{42}$$

$$T_{43}$$

$$T_{44}$$

$$\cdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

Extrapolation

formula: build higher order solutions

$$T_{j,k+1} = T_{j,k} + \frac{T_{j,k} - T_{j-1,k}}{j/(j-k) - 1}$$

High-order solutions: low order + (column index-1)

Extrapolated Multirate IMEX Methods

Thank you. Questions?

Balanced, Conservative Finite-Difference Formulation (1)

Governing Equations for 2D flows $\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{F}\left(\mathbf{u}\right)}{\partial x} + \frac{\partial \mathbf{G}\left(\mathbf{u}\right)}{\partial u} = \mathbf{s}\left(\mathbf{u}\right)$ (gravity acting along –y axis) $\mathbf{u} = \begin{vmatrix} \rho \\ \rho u \\ \rho v \\ e \end{vmatrix}, \ \mathbf{F} = \begin{vmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ (e+p)u \end{vmatrix}, \ \mathbf{G} = \begin{vmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ (e+p)v \end{vmatrix}, \ \mathbf{s} = \begin{vmatrix} 0 \\ 0 \\ -\rho g \\ -\rho v q \end{vmatrix}$ $u = \text{constant}, v = 0, \ \rho = \rho_0 \varrho \left(y \right), \ p = p_0 \varphi \left(y \right)$ **Hydrostatically** balanced equilibrium $\frac{dp}{dy} = -\rho g$ Pressure gradient Flow variables at reference balanced by altitude gravitational source

 $\Rightarrow RT_0 \left[\varrho \left(y \right) \right]^{-1} \varphi' \left(y \right) = -g$

Balanced, Conservative Finite-Difference Formulation (2)

Extension of Xing & Shu's method (J. Sci. Comput., 2013)

$$\varrho(y) = \exp\left(-\frac{gy}{RT}\right)$$

 $\varphi(y) = \exp\left(-\frac{gy}{RT}\right)$
Isothermal equilibrium

$$\begin{split} \varrho\left(y\right) &= \left[1 - \frac{(\gamma - 1)gy}{\gamma R\theta}\right]^{1/(\gamma - 1)}\\ \varphi\left(y\right) &= \left[1 - \frac{(\gamma - 1)gy}{\gamma R\theta}\right]^{\gamma/(\gamma - 1)} \end{split}$$

Constant potential temperature (Rising thermal bubble)

$$\varrho(y) = \exp\left(-\frac{N^2}{g}y\right) \left[1 + \frac{(\gamma - 1)g^2}{\gamma R T_0 N^2} \left\{\exp\left(-\frac{N^2}{g}y\right) - 1\right\}\right]^{1/(\gamma - 1)}$$
$$\varphi(y) = \left[1 + \frac{(\gamma - 1)g^2}{\gamma R T_0 N^2} \left\{\exp\left(-\frac{N^2}{g}y\right) - 1\right\}\right]^{\gamma/(\gamma - 1)}$$

Stratified atmosphere with a specified Brunt-Vaïsälä frequency (Inertia-gravity wave)

Balanced, Conservative Finite-Difference Formulation (3)

Balanced, Conservative Finite-Difference Formulation (4)

	Flux	Source
Interpolation	$\hat{\mathbf{G}}_{j+1/2}^{L,R} = \mathcal{R}_{\mathbf{G}}^{L,R} \left[\mathbf{G}\right] \equiv \sum_{k=-m}^{n} \hat{\sigma}_k \mathbf{G}_{j+k}$	$\hat{\varphi}_{j+1/2}^{L,R} = \mathcal{R}_{\mathbf{G}}^{L,R} \left[\varphi\right] \equiv \sum_{k=-m}^{n} \hat{\sigma}_{k} \varphi_{j+k}$
Upwinding (Rusanov)	$\hat{\mathbf{G}}_{j+1/2} = \frac{1}{2} \left[\hat{\mathbf{G}}_{j+1/2}^{L} + \hat{\mathbf{G}}_{j+1/2}^{R} \right] \\ + \frac{1}{2} \max_{j,j+1} \nu_j \left(\hat{\mathbf{u}}_{j+1/2}^{L} - \hat{\mathbf{u}}_{j+1/2}^{R} \right)$	$\hat{\varphi}_{j+1/2} = \frac{1}{2} \left[\hat{\varphi}_{j+1/2}^L + \hat{\varphi}_{j+1/2}^R \right]$
Differencing	$\left. \frac{\partial \mathbf{G}}{\partial y} \right _{y=y_j} \approx \frac{1}{\Delta y} \left[\hat{\mathbf{G}}_{j+1/2} - \hat{\mathbf{G}}_{j-1/2} \right]$	$\left \frac{\partial \varphi}{\partial y} \right _{y=y_j} \approx \frac{1}{\Delta y} \left[\hat{\varphi}_{j+1/2} - \hat{\varphi}_{j-1/2} \right]$
n		1

k = -m

 $\mathcal{R}_{\mathbf{G}}^{L,R}[\phi] \equiv \sum \hat{\sigma}_k \phi_{j+k}$ Represents the WENO/CRWENO finite-difference operator with the non-linear weights computed based on G(u)

Diffusion term in

upwinding must vanish for equilibrium solution

$$\hat{\mathbf{G}}_{j+1/2} = \frac{1}{2} \left[\hat{\mathbf{G}}_{j+1/2}^{L} + \hat{\mathbf{G}}_{j+1/2}^{R} \right] \\ + \frac{1}{2} \max_{j,j+1} \nu_{j} \left(\hat{\mathbf{u}}^{*}{}_{j+1/2}^{L} - \hat{\mathbf{u}}^{*}{}_{j+1/2}^{R} \right) \qquad \mathbf{u}^{*} = \begin{bmatrix} \rho \left\{ \varrho \left(y \right) \right\}^{-1} \\ \rho u \left\{ \varrho \left(y \right) \right\}^{-1} \\ \rho v \left\{ \varrho \left(y \right) \right\}^{-1} \\ \frac{p \left\{ \varphi \left(y \right) \right\}^{-1}}{\gamma - 1} + \frac{1}{2} \rho \left\{ \varrho \left(y \right) \right\}^{-1} \left(u^{2} + v^{2} \right) \end{bmatrix}$$

Constant at steady state

Verification of Balanced Formulation

Case 1: Isothermal equilibrium Case 2: Stratified atmosphere with constant potential temperature Case 3: Stratified atmosphere with specified Brunt-Vaïsälä frequency **Difference of the final solution with the initial solution** (Verification that hydrostatic balance is preserved to machine precision)

Case	L_1	L_2	L_{∞}	L_1	L_2	L_{∞}
	WENO5			CRWENO5		
Case 1	2.46E-15	2.89E-15	3.91E-15	2.00E-14	1.71E-14	1.50E-14
Case 2	6.02E-15	7.11E-15	1.31E-14	1.50E-14	1.53E-14	2.09E-14
Case 3	3.63E-15	4.35E-15	8.15E-15	1.58E-14	1.83E-14	6.11E-14

- Algorithm is able to **preserve the hydrostatic balance** at any grid resolution and for any duration to machine precision.
- Small perturbations to the hydrostatic balance are accurately resolved.

