
On Preconditioning for the Two-Field Neutral Model

J. Christopher∗1, A. Davis†1, D. Ghosh ‡2, M. Dorf§2, M. Dorr¶2, L. Ricketson ‖2, and X. Gao ∗∗1
1Computational Fluid Dynamics and Propulsion Laboratory , Colorado State University, Fort Collins, CO, USA

2Center for Applied Scientific Computing , Lawrence Livermore National Laboratory, Livermore, CA, USA

Achieving high performance in accuracy and efficiency for the numerical modeling of edge
plasma is challenging because of the extreme anisotropy of the transport equations for complex
physical processes. The multiscale nature calls for implicit-explicit (IMEX) or fully-implicit
time integration methods for the sake of stability and efficiency. Nevertheless, the implicitness
introduces nonlinear and linear solvers in the solution process whose efficiency usually depends
on preconditioners. Therefore, the present study aims to explore preconditioning for nonlinear
terms to attain an efficient solver for the spatial discretization matrices and thus allow for large
time steps. A new preconditioner is derived and implemented for a two-field fluid neutral
model. Its application to solve the model with a slab configuration that represents a 2D section
in the longitudinal-radial plane of the edge geometry demonstrates expected solution accuracy
but performance needs further improvement.

I. Nomenclature

� implicit term
� explicit term
6 neutral gas
8 ion
8I ionization
A recombination
E8I ionization frequency
EA recombination frequency
E2G charge-exchange frequency
<6 neutral species mass

)6 neutral species temperature
+‖8 parallel ion velocity
+‖6 parallel neutral velocity
� a dummy scalar variable
b magnetic field unit vector
〈fE〉2G charge exchange cross section
〈fE〉8I ionization cross section
=8 number density of ion
� normalized diffusivity
` normalized viscosity

II. Introduction
Numerical modeling of edge plasmadynamics requires a hierarchy of computational tools and physics models

depending on the level of complexity to be considered. Challenges in edge plasma modeling are presented by the
multiscale nature due to the inhomogeneous magnetic field driving complex physics through magnetic mirroring,
ballooning, toroidal mode coupling, and curvature drift as well. The integration of physical processes, such as those
describing the edge localized modes including magneto-fluid dynamics, turbulence, neutral transport, and plasma-wall
interactions, would make the system of partial differential equations (PDEs) that govern the rich physics daunting
to solve. Effective and efficient numerical strategies need to be developed for understanding complex edge plasma
physics with non-equilibrium thermodynamics and non-Maxwellian distributions. The present study is focused on the
development of a preconditioner for nonlinear and linear solvers resulting from the use of implicit-explicit (IMEX) or
fully implicit time integration methods, which are used to overcome severe time step constraints imposed by the stiff
PDEs when using explicit methods.

∗PhD, Corr. Author, AIAA member, Joshua.Christopher@colostate.edu
†PhD Student, andrew.davis@colostate.edu
‡Staff Scientist, ghosh5@llnl.gov
§Staff Scientist, dorf1@llnl.gov
¶Senior Scientist, dorr1@llnl.gov
‖Staff Scientist, ricketson1@llnl.gov

∗∗Associate Professor, AIAA senior member, gao@colostate.edu

1

D
ow

nl
oa

de
d

by
 1

17
.2

11
.1

7.
70

 o
n

Ja
nu

ar
y

14
, 2

02
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

2-
11

08

 AIAA SCITECH 2022 Forum

 January 3-7, 2022, San Diego, CA & Virtual

 10.2514/6.2022-1108

 Copyright © 2022 by J.

 Christopher, A. Davis, D. Ghosh, M. Dorf, M. Dorr, L. Ricketson, X. Gao. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 AIAA SciTech Forum

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2022-1108&domain=pdf&date_stamp=2021-12-29

Fig. 1 Illustration of the edge geom-
etry: the edge region is defined from
the outer wall, across the separatrix,
then to the last closed magnetic field
line/surface of the core region [1].

The computational framework, COGENT (COntinuum Gyrokinetic
Edge New Technology) developed at Lawrence Livermore National Labora-
tory [2], provides the base for the development and testing of preconditioners
in the present study. The underlying physics model in COGENT is a 4D/5D,
Eulerian, gyrokinetic Vlasov-Poisson system with an imposed electromag-
netic field. The computational domain spans from the core region, across the
magnetic separatrix, and into the scrape-off layer. The structure of the edge
is illustrated by Fig. 1. The spatial discretization scheme is based on finite
volume methods (FVMs) and, by design, the discretization schemes are
fourth-order accurate in space and time. Due to the enormous disparity in
time scales associated with PDEs governing the complex edge plasmadynam-
ics, fully-implicit or implicit-explicit (IMEX) time marching methods are
preferred to fully-explicit ones for numerical stability and solution efficiency.

Nevertheless, numerical challenges present with the implicitness of time
integration. Fully implicit or IMEX methods require solving a nonlinear
system at each time step, introducing significant computational cost for high-
dimensional complex problems and nontrivial parallelization difficulties.
More than often, slow convergence or even divergence occurs when the nonlinear system, or the linear system resulting
from the linearization of this nonlinear system, is not well preconditioned. Therefore, efficient and robust nonlinear
and linear solvers are needed, and designing good preconditioners is the essential key. As a starting point, this study
is focused on the derivation, implementation, and test of a preconditioner based on the analytical Jacobians (e.g.,
source Jacobian, flux Jacobian, or collectively residual Jacobian, depending on terms to be treated implicitly). The
preconditioner performance is demonstrated using the two-field neutral model for a 2D slab geometry and compared to
that of the existing preconditioner.

III. Mathematical Equations of the Two-field Neutral Model
We focus on the fluid neutral model, specifically, the two-field neutral model in physical space [3], described by

md6

mC
+ ®∇ ·

(
+‖6 b d6

)
− ®∇ ·

(
� ®∇⊥

(
d6)6

))
= (EA − E8I) d6 , (1)

md6+‖6

mC
+ ®∇ ·

([
+‖6b − �d−1

6
®∇⊥

(
d6)6

)]
d6+‖6

)
− ®∇ ·

(
` ®∇+‖6

)
= −®∇‖

(
d6

<6
)6

)
+ d6E2G

(
+‖8 −+‖6

)
− E8Id6+‖6 + EA d6+‖8 , (2)

where ®∇⊥� = ®∇� − b(b · ®∇)� and the ‖6 direction is defined as the direction parallel to the field line. The normalized
diffusivity (�), viscosity (`), charge-exchange frequency (E2G), and ionization frequency (E8I) coefficients are given by

� = <−1
6 E
−1
2G , ` =

d6)6

<6E2G
, E2G ≡ 〈fE〉2G=8 , E8I ≡ 〈fE〉2G=8 . (3)

The ion number density is given by =8 (number of particles/volume). Recombination occurs when positive ions in the
plasma capture a free electron and form neutral atoms, thus, the recombination frequency, EA , describes the rate of this
recombination process. In 〈fE〉, E is the electron velocity and is a function of electron energy, E =

√
2〈�〉/< where

〈�〉 = :1)4, :1 is the Boltzmann constant,)4 is the electron temperature, and < is the electron mass.
Rewrite Eqns.(1)-(2) in vector notation as

mU
mC
+ ®∇ ·

(
®E − ®F

)
= S(U) , (4)

where U is the solution vector, U =
[
d6, d6+‖6

]T, ®E is the convective flux dyad

®E =
[

+‖6 b d6[
+‖6b − �d−1

6
®∇⊥

(
d6)6

)]
d6+‖6

]
, (5)

2

D
ow

nl
oa

de
d

by
 1

17
.2

11
.1

7.
70

 o
n

Ja
nu

ar
y

14
, 2

02
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

2-
11

08

and ®F is the diffusive flux dyad

®F =
[
� ®∇⊥

(
d6)6

)
` ®∇+‖6

]
, (6)

and S is the source vector in physical space

S =

[
(EA − E8I) d6

−®∇‖
(
d6

<6
)6

)
+ d6E2G

(
+‖8 −+‖6

)
− E8Id6+‖6 + EA d6+‖8

]
. (7)

Note that for generality, we call the flux dyads even though the current model is simplified with one flux vector (in the
direction parallel to the field line).

COGENT employs mapped grids to accommodate complex geometry. The computational space is Cartesian and
facilitates the use of adaptive mesh refinement. In this paper, we present the mathematical models and Jacobians in both
physical and computational spaces for convenience.

Assume a smooth mapping from some abstract coordinate space into physical space ®G = ®G(®b) , ®G : [0, 1]� → R� ,
where ®G denotes the physical space, eg. (G, H, I) for 3D in space, and ®b represents the computational space, eg. (b, [, Z)
for 3D in space. The divergence of a vector field, ®F , in physical space can be expressed in computational space as

®∇G · ®F =
1
�
®∇b · (NT ®F) , (8)

where � is the grid metrics Jacobian and NT contains grid metrics. ®∇G and ®∇b are the vector differential operator in the
physical and the computational space, respectively. Assuming the coordinates are time invariant, we obtain

� ≡ det(®∇b ®G) , NT = � ®∇G ®b , N = � (®∇G ®b)T , and NT
3,B ≡ det

(
(®∇b ®G)T (3 |eB)

)
,

where A(3 |eB) denotes a modification of matrix A by replacing row 3 with vector eB .
In computational space, ®b, Eq. (4) is transformed using grid metrics as

m (�U)
mC

+ ®∇b ·
(
NT (®E − ®F))

= �S . (9)

Where �U is the solution vector �U =
[
�d6, �d6+‖6

]T. In the divergence term, the hyperbolic flux dyad would remain
exactly the same as that in physical space if it was strictly convective or hyperbolic, but here it contains the gradient of
d6)6, which requires grid metrics for the transformation. Therefore, we use ®E to distinguish it from ®E. Similarly, the
source vector includes a derivative term, and S replaces S. In general, the viscous (elliptic) flux, ®F , is different from
that in physical space because it always involves derivatives. The flux dyads and source vector in computational space
are given by

®E =
[

+‖6bd6[
+‖6b − �d−1

6
N
�
®∇b⊥

(
d6)6

)]
d6+‖6

]
, ®F =

[®Q
®®T

]
, (10)

S =

[
(EA − E8I) d6

−N
�
®∇b ‖

(
d6

<6
)6

)
+ d6E2G

(
+‖8 −+‖6

)
− E8Id6+‖6 + EA d6+‖8

]
. (11)

For clarity, we use ®∇b to denote the operator in computational space, while either ®∇G or ®∇ represents the operator in

physical space. In ®F of Eq. (10), ®Q is the mapped heat flux vector and ®®T is the mapped stress tensor. Here, note that
the mapped stress tensor is a simplified version.

In general, gradients of scalars (q) or vectors (®q) in physical space are derived using the chain rule,

®∇Gq =
N
�
®∇bq and ®∇G ®q = (®∇b ®q)

NT

�
. (12)

3

D
ow

nl
oa

de
d

by
 1

17
.2

11
.1

7.
70

 o
n

Ja
nu

ar
y

14
, 2

02
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

2-
11

08

Therefore, the mapped strain tensor is given by

®∇G ®D =
(®∇b ®D) NT

�
. (13)

The heat flux is modeled using Fourier’s law and given by

®Q = −�N
�
®∇b (d6)6) . (14)

The mapped stress tensor (in the “full version” which is kept here for future reference) is defined by

®®T = 2`
(
®®(− 1

3
�−1 ®®� ®∇b ·

(
NT ®D

))
, (15)

where the viscosity is ` and the strain rate tensor, ®®(, is in general defined by

®®(= 1
2

(
(®∇b ®D)

NT

�
+

(
(®∇b ®D)

NT

�

)T)
. (16)

However, in the current simplified model, the mapped stress tensor is evaluated by the following with only the parallel
component of ®D (e.g., +‖8 , +‖6)

®®T = 2` ®®(, with ®®(= 1
2
(®∇b ®D)

NT

�
, (17)

where factors 2 and 1/2 are kept for convenience in future extension in the code implementation.

IV. The Semi-Discrete Form from the Application of Finite Volume Methods
Applying the finite volume method on mapped grids, Eq. (9) then becomes

m

mC

∫
+i

�U d®b +
∫
+i

®∇b · (NT (®E − ®F)) d®b =
∫
+i

�S d®b . (18)

The semi-discrete form on mapped grids is

d
dC
〈�U〉i = −

1
Δb3

�∑
3=1

((
〈NT

3
®E〉i+ 1

2 e
3 − 〈NT

3
®E〉i− 1

2 e
3

)
−

(
〈NT

3
®F〉i+ 1

2 e
3 − 〈NT

3
®F〉i− 1

2 e
3

))
+ 〈�S〉i , (19)

where the subscript 3 denotes the 3Cℎ row of NT, 〈 ®E〉i+ 1
2 e

3 and 〈 ®F〉i+ 1
2 e

3 are the mapped viscous flux dyads at cell
faces. Angle bracket, 〈·〉, represents either cell-averaged or face-averaged quantity.

V. Implicitness and Preconditioning
In the study, the preconditioners for both the IMEX and the fully implicit methods are derived for Eq. (19). The

existing approximate preconditioner is briefly reviewed first. Then, the new preconditioner based on the analytical
Jacobians for the source and fluxes is derived in computational space. The new preconditioner is implemented in
COGENT and its performance is evaluated and compared to the existing preconditioner.

A. The Implicit-Explicit (IMEX) Method
Both the viscous and source terms are treated implicitly while the inviscid is explicitly evolved. Denote ®F� and ®F�

as the implicit and explicit terms, respectively

®F� = NT ®F + �S , (20)
®F� = −NT ®E , (21)

4

D
ow

nl
oa

de
d

by
 1

17
.2

11
.1

7.
70

 o
n

Ja
nu

ar
y

14
, 2

02
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

2-
11

08

where subscripts � and � stand for implicit and explicit, respectively. Following Ghosh [4] and the COGENT notation
system, we denote the solution vector by y ≡ �U; that is [H1, H2] =

[
�d6, �d6+‖6

]T. Integrate Eq. (19) in time using an
additive Runge-Kutta (ARK) method. For example, we express the nonlinear function resulting from the IMEX time
integration in form of

G (y) ≡ Uy − ®F� (y) − r = 0 , (22)

where

U =
1

ΔC0̃;;
, r =

1
ΔC0̃;;

©­«y= + ΔC
;−1∑
9=1

{
0̃; 9 ®F�

(
y 9

)
+ 0̃; 9 ®F�

(
y 9

)}ª®¬ . (23)

The U’s are the coefficients from Butcher table associated with ARK methods. The term r is a function of old (or
known) value of y.

Eq. (22) is solved using the Newton’s method and the brief steps are provided as follows:

y:+1 = y: −
[
J

(
y:

)]−1
G

(
y:

)
, (24)

where the superscript : is the Newton iteration index and the Jacobian is given by

J (y) = 3G (y)
3y

. (25)

Linear Solve Eq. (24) is a linear system, a Δ-form that solves for Δy ≡ y:+1 − y: using a preconditioned generalized
minimum residual (GMRES) methods for solution efficiency as

J
(
y:

)
Δy = −G

(
y:

)
. (26)

Preconditioning The right preconditioned GMRES algorithm expresses Eq. (26) as

J
(
y:

)
P

(
y:

)
P

(
y:

)−1
Δy = −G

(
y:

)
, (27)

where P
(
y:

)
≈ J

(
y:

)
is the preconditioning matrix. This requires the preconditioning matrix P evaluated at the

current Newton iteration solution y: ≡ �U8,: . However, to reduce the computational expense, the preconditioning
matrix is updated every stage (before solving for that stage) with the initial guess for the stage solution �U8,0. Thus, the
following system is solved:

J
(
y:

)
P

(
y0

)
P

(
y0

)−1
Δy = −G

(
y:

)
, (28)

instead of Eq. (27), with the assumption that P
(
y0) ≈ P (

y:
)
.

An existing preconditioner assumes decoupling between Eqns. (1) and (2). That is, we “freeze” density in the
parallel momentum equation. The preconditioner to 3G (y) /3y can therefore be taken as

P(y) = 3G (y) /3y (29)

= UI − 3
®F�

3y
, (30)

P(y) = −
[
�∇ ·

(
�∇⊥

(
)6

�
◦
))
− (EA − E8I − U)◦ 0

0 �∇ ·
(
[∇(�−1H−1

1 ◦)
)
+ (E2G + E8I + U)◦

]
. (31)

The “◦” symbol indicates the “operator action” of the preconditioner. That is,

P11 (y) [q] = �∇ ·
(
�∇⊥

(
)6

�
q

))
− (EA − E8I − U)q . (32)

5

D
ow

nl
oa

de
d

by
 1

17
.2

11
.1

7.
70

 o
n

Ja
nu

ar
y

14
, 2

02
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

2-
11

08

Let

z =

[
I1

I2

]
=

[
Ī1�)

−1
6

Ī2�d6

]
. (33)

The vector z is applied to the operator action of Eq. (31)

P(y) [z] = −
[
�∇ · (�∇⊥ (Ī1)) − (EA − E8I − U) Ī1�)

−1
6 0

0 �∇ · ([∇(Ī2)) + (E2G + E8I + U)�d6 Ī2

]
. (34)

Reformulate as a linear system and solve the preconditioner system of P[z] = G

−
[
∇ · (�∇⊥ (◦)) − (EA − E8I − U))−1

6 ◦
∇ ·

(
[∇(H−1

1 ◦)
)
+ (E2G + E8I + U)d6◦

] 
Ī1

Ī2

 =

�−1G1

�−1G2

 . (35)

B. Fully Implicit Method
Now all terms will be treated implicitly. The implicit term, ®F� , now contains the inviscid and viscous fluxes as well

as the source term
®F� = −NT ®E + NT ®F + �S . (36)

The nonlinear function, G, keeps the same notation but with ®F� now also containing the inviscid flux.
The source Jacobian, A = mS

mU , can then be written with preconditioner operator actions as

A =

[
(EA − E8I)◦ 0

∇‖
(
)6

�<6
◦
)
−+‖8 (E2G + EA)◦ (−E2G − E8I)◦

]
. (37)

The convective flux Jacobian, B = mE
mU , is given by

B =


0 �∇ ·
(
b�−1◦

)
−�∇ ·

((
�−1

(
H2

2
H2

1

)
b − � H2

H2
1
∇⊥

(
H1)6
�

))
◦
)
− �∇ ·

(
�
H2
H1
∇⊥

(
)6

�
◦
))

�∇ ·
(((

2H2
� H1

)
b − �

H1
∇⊥

(
H1)6
�

))
◦
) , (38)

The diffusive flux Jacobian, C = mF
mU , is equal to

C =


�∇ ·

(
�∇⊥

(
)6

�
◦
))
− (EA − E8I − U)◦ 0

�∇ ·
(
[∇

(
H2
H2

1
◦
))
− �∇ ·

((
m[

mH1
∇ H2
H1

)
◦
)

�∇ ·
(
[∇(�−1H−1◦)

) . (39)

Gathering all of the derivatives provides

P(y) = mG
my

=

(
P11 P12

P21 P22

)
, (40)

with the matrix entries

P11 = −�∇ ·
(
�∇⊥

(
)6

�
◦
))
− (EA − E8I − U)◦ , (41)

P12 = �∇ ·
(
b�−1◦

)
(42)

P21 = −�∇ ·
((
�−1

(
H2

2

H2
1

)
b − � H2

H2
1
∇⊥

(
H1)6

�

))
◦
)
− �∇ ·

(
�
H2
H1
∇⊥

(
)6

�
◦
))

(43)

+ �∇ ·
(
[∇

(
H2

H2
1
◦
))
− �∇ ·

((
m[

mH1
∇ H2
H1

)
◦
)
+ ∇‖

(
)6

�<6
◦
)
−+‖8 (E2G + EA)◦ , (44)

P22 = �∇ ·
(((

2H2
�H1

)
b − �

H1
∇⊥

(
H1)6

�

))
◦
)
− �∇ ·

(
[∇(�−1H−1

1 ◦)
)
+ (E2G + E8I + U) ◦ . (45)

6

D
ow

nl
oa

de
d

by
 1

17
.2

11
.1

7.
70

 o
n

Ja
nu

ar
y

14
, 2

02
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

2-
11

08

This formulation is used because the derivatives can be grouped into hyperbolic, elliptic, and source terms. Note that in
this study, only the elliptic and source terms are implemented. That is, the derivatives above are reduced to

P11 = −�∇ ·
(
�∇⊥

(
)6

�
◦
))
− (EA − E8I − U)◦ (46)

P12 = 0 (47)

P21 = −�∇ ·
(
�
H2
H1
∇⊥

(
)6

�
◦
))
+ �∇ ·

(
[∇

(
H2

H2
1
◦
))
−+‖8 (E2G + EA)◦ (48)

P22 = −�∇ ·
(
[∇(�−1H−1

1 ◦)
)
+ (E2G + E8I + U) ◦ . (49)

As with the implicit-explicit method, introduce z =
(
�)−1
6 Ī1, �H1 Ī2

)
for application to the preconditioner’s action. The

current implementation of the elliptic solver cannot handle the different coefficients in front of the action in P11 and P21,
and so the derivative is split into

�∇ ·
(
[∇

(
H2

H2
1
I1

))
= �∇ ·

(
[∇

(
H2

H2
1

�

)6
Ī1

))
(50)

= �∇ ·
(
[
H2

H2
1

�

)6
∇Ī1

)
+ �∇ ·

((
[∇ H2

H2
1

�

)6

)
Ī1

)
(51)

and dropping the hyperbolic part in Eq. (51) gives

P21 = −�∇ ·
(
�
H2
H1
∇⊥ (Ī1)

)
+ �∇ ·

(
[
H2

H2
1

�

)6
∇Ī1

)
−+‖8 (E2G + EA)

�

)6
Ī1 . (52)

Other entries in the new preconditioner are

P11 = −�∇ · (�∇⊥ (Ī1)) − (EA − E8I − U)
�

)6
Ī1 (53)

P12 = 0 (54)
P22 = −�∇ · ([∇(Ī2)) + (E2G + E8I + U)�d6 Ī2 . (55)

VI. Results and Discussion
The new preconditioner is implemented in the COGENT framework. The accuracy and performance of the new

preconditioner are assessed. A slab configuration representing a 2D section in the longitudinal-radial plane of a
cylindrical coordinate system with the coinciding origin at the central symmetry axis of the edge geometry (or the
well-known tokamak) is used. The test configurations are first described, then results are presented and discussed.

As mentioned, a 2D slab geometry, shown in Fig. (2), representative of a section in a tokamak is used. This consists
of a rectangular geometry with a width of 1.1 m and a height of 2 m. The density is initialized to

d0 = 1.0 + (H − 2)2
4

, (56)

the parallel neutral velocity is initialized to zero, and the parallel ion velocity is initialized to

+‖6,0 = sin(Hc) . (57)

After solution time C = 0.125, the longitudinal profile of neutral density and neutral parallel velocity develops as shown
in Fig. (3). As seen from the figure, the solution profiles obtained by the new preconditioner reproduce those by the old
preconditioner, which is expected for a properly working preconditioner. To further verify the solution accuracy, error
norms are measured. The grid convergence rate should match the existing preconditioner, which is a rigorous test to
ensure that the new preconditioner is properly implemented and applied. The !?-norm (? = 1, 2,∞) is listed in Tbl. (1).

7

D
ow

nl
oa

de
d

by
 1

17
.2

11
.1

7.
70

 o
n

Ja
nu

ar
y

14
, 2

02
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

2-
11

08

z

x

N
eu
m
an

n
B
o
u
n
d
ar
y

N
eu
m
a
n
n

B
ou

n
d
ar
y

Dirichlet
Boundary

Dirichlet
Boundary

0 0.5 1 1.5 2

1

1.2

1.4

1.6

z
ρ
g

−0.5

0

0.5

1

ρ
g
V
‖g

ρg, New PC
ρg, Existing PC
ρgV‖g, New PC

ρgV‖g, Existing PC

Fig. 2 Representation of the slab ge-
ometry with boundary conditions. The
mesh is stretched in physical space.

Fig. 3 Profiles of the density and the parallel velocity for the neu-
trals along the I-direction (longitudinal) at the center of the radial
coordinate. The two preconditioners are identically similar.

Table 1 A Richardson extrapolation verifies the order of accuracy of the new preconditioner. As the mesh is
refined, the error trends towards second-order convergence. The errors and convergence rates for the existing
preconditioner are provided for reference. Both preconditioners converge at the same rate.

New Preconditioner
Var !?-norm 4×128 Rate 8×256 Rate 16×512 Rate 32×1024

!∞ 2.785e-04 2.058 6.690e-05 2.088 1.574e-05 2.113 3.640e-06
d !1 4.954e-05 2.108 1.149e-05 2.052 2.771e-06 1.917 7.338e-07

!2 9.289e-05 2.095 2.174e-05 2.108 5.043e-06 1.975 1.283e-06
!∞ 4.370e-03 1.008 2.173e-03 1.116 1.003e-03 1.245 4.232e-04

d+‖6 !1 2.569e-04 1.253 1.078e-04 1.240 4.562e-05 1.307 1.844e-05
!2 6.958e-04 1.070 3.313e-04 1.145 1.498e-04 1.260 6.255e-05

Existing Preconditioner
Var !?-norm 4×128 Rate 8×256 Rate 16×512 Rate 32×1024

!∞ 2.785e-04 2.058 6.690e-05 2.088 1.574e-05 2.113 3.640e-06
d !1 4.954e-05 2.108 1.149e-05 2.052 2.771e-06 1.917 7.338e-07

!2 9.289e-05 2.095 2.174e-05 2.108 5.043e-06 1.975 1.283e-06
!∞ 4.370e-03 1.008 2.173e-03 1.116 1.003e-03 1.245 4.232e-04

d+‖6 !1 2.569e-04 1.253 1.078e-04 1.240 4.562e-05 1.307 1.844e-05
!2 6.958e-04 1.070 3.313e-04 1.145 1.498e-04 1.260 6.255e-05

A Richardson extrapolation is used to compute the errors for measuring the order of accuracy of the new preconditioner.
A sequence of mesh sizes, refined from 4 × 128 cells up to 64 × 2048 cells with a refinement ratio of 2 between two
consecutive meshes, are used. Clearly shown, the error reduction rate converges to second order as the mesh is refined.

For the same solution accuracy, the performance of the preconditioners is of interest. To assess the performance, two
cases are run to the same solution time, one with the new preconditioner and the other with the existing preconditioner.
The mesh of 4 × 128 cells is used and 400 time steps are taken. An absolute convergence tolerance of 1 × 10−10 and
relative tolerance of 1 × 10−6 are used. Measures, such as the function evaluation, nonlinear iterations, linear iterations,

8

D
ow

nl
oa

de
d

by
 1

17
.2

11
.1

7.
70

 o
n

Ja
nu

ar
y

14
, 2

02
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

2-
11

08

Table 2 Performance comparison between the new preconditioner and the existing preconditioner. The
number of function evaluations, nonlinear iterations, and linear iterations were the same for all runs of each
preconditioner, while the average wall-clock time, median wall-clock time, and one standard deviation are are
measured from all 10 runs.

Measure New Preconditioner Existing Preconditioner % Reduction
Function Evaluations 7008 7937 11.7
Nonlinear iterations 834 835 0.1
Linear iterations 2973 3901 23.8

Average wall-clock time (s) 32.14 31.74 -1.3
Median wall-clock time (s) 32.02 31.70 -1.0
One standard deviation (s) 0.44 0.31 -41.9

and wall-clock time, are presented in Tbl. (2). The new preconditioner requires fewer function evaluations, nonlinear
iterations, and linear iterations than the existing preconditioner. The new preconditioner decreases the residual by
approximately 1.7 magnitudes per iteration while the existing preconditioner decreases the residual by approximately
1.3 magnitudes per iteration. Unfortunately, the new preconditioner is currently, on average, slightly slower than the
existing preconditioner. This is due to the fact that the new preconditioner is solving a block 2x2 matrix for each cell,
which is more expensive than the two 1x1 equation solves at each cell performed by the existing preconditioner.

VII. Conclusion and Future Work
An analytic preconditioner for the two-field neutral model is derived and the elliptic and source terms of the

preconditioner are implemented in COGENT. The new preconditioner preserves the second-order solution accuracy.
This new preconditioner reduces the number of function calls, nonlinear iterations, and linear iterations compared to the
existing preconditioner, but a speedup is not yet realized. Nevertheless, as a first step, the present study derives the full
preconditioner and lays out the code structure for future study.

Future work will be focused on performance optimization. Moreover, the preconditioner will be applied to large-scale
problems which may demonstrate more computational gain than the existing preconditioner. The inclusion of the
hyperbolic term in the analytic preconditioner will be considered and its impact on performance will be investigated.

VIII. Acknowledgments
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract No. DE-AC52–07NA27344.

References
[1] https://www.differ.nl/research/plasma-material-interactions, 2021.

[2] https://github.com/LLNL/COGENT, 2021.

[3] Dorf, M., Two-Field Neutral Model, Lawrence Livermore National Laboratory, 2021.

[4] Ghosh, D., Implicit-Explicit Time Integration in COGENT, Lawrence Livermore National Laboratory, April 2018.

9

D
ow

nl
oa

de
d

by
 1

17
.2

11
.1

7.
70

 o
n

Ja
nu

ar
y

14
, 2

02
2

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

2-
11

08

	Nomenclature
	Introduction
	Mathematical Equations of the Two-field Neutral Model
	The Semi-Discrete Form from the Application of Finite Volume Methods
	Implicitness and Preconditioning
	The Implicit-Explicit (IMEX) Method
	Fully Implicit Method

	Results and Discussion
	Conclusion and Future Work
	Acknowledgments

