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Tokamak edge plasma simulations can benefit from the 
use of high-order continuum methods

[A. W. Leonard, Phys. Plasmas  21, 090501 (2014)] 

Radial scales are comparable 
to ion drift orbit excursions

F0 strongly deviates from Maxwellian

Motivates the use of continuum methods:

• Free of particle noise (cf. PIC)
• Can take advantage of high-order methods

Requires solving the full-F problem:
• Low-amplitude turbulence (f1) &        

quasi-equilibrium dynamics (F0)

H-mode is distinguished by strong 
edge plasma gradients  

Successful applications of continuum 
methods to cross-separatrix modeling is 

demonstrated with the COGENT code
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Continuum gyrokinetic code COGENT has been developed as 
part of the Edge Simulation Laboratory (ESL) collaboration

High-order (4th-order) finite-volume Eulerian gyrokinetic code  

Physics models (LLNL/UCSD) Math algorithms (LLNL/LBNL)
• Multispecies full-F gyrokinetic equations 
• Self-consistent electrostatic potential
• Collisions (including full Fokker-Planck)
• Anomalous transport models (in 4D) 

• High-order mapped-multiblock
technology to handle X-point

• Advanced multigrid solvers
• Advanced time integrators (ImEx) 

COGENT

Tokamak applications 
(AToM, ESL, PSI)

New collaborations welcome!

COGENTLow-Temp Z-pinch 

https://github.com/LLNL/COGENT/

𝜕𝐵∥∗𝑓
𝜕𝑡

+ 𝛻𝑹 �̇�$%𝐵∥∗𝑓 +
𝜕
𝜕𝑣∥

̇𝑣∥𝐵∥∗𝑓 = 𝐶 𝐵∥∗𝑓
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First-principles and reduced models in core gyrokinetics

∇!
𝑐"𝑚#𝑛#,%&

𝐵" ∇!Φ = 𝑒𝑛' − 𝑒 𝑛#,%& +
1

𝑚#𝜔&#"
∇!"

𝑝#,!
2

Gyrokinetic Poisson equation (adopt long-wavelength limit) 

• Gyrokinetic ions and electrons
- Most detailed approach
- Computationally challenging due to stiff electron dynamics 

• Gyrokinetic ions and adiabatic electrons, 𝑛! = 𝑛",$%& 1 + !'
(!
− ! '

(!
- Often used in core codes for ITG turbulence, neoclassical transport, etc
- Cannot be straightforwardly extended across the separatrix 
- Does not capture resistive effects important in the cooler edge region 

Need a computationally efficient (reduced) model for 
simulations of ion scale turbulence in single-null geometries
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Hybrid GK ion – fluid electron vorticity model (𝛁 ⋅ 𝒋 = 𝟎)

𝜕
𝜕𝑡
𝜛 + ∇& 𝑐

−∇&Φ×𝑩
𝐵'

𝜛 + ∇∥ 𝑉(,∥𝜛 = 𝛁& ⋅ 6
2𝜋
𝑚(
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𝑛(,$%𝑇-
𝐵

∇×𝒃 +
𝒃×∇𝐵
𝐵

+ 𝛁 ⋅ 𝒋∥

Reynolds stress term Kinetic 𝛁 ⋅ 𝒋𝒊,& Fluid 𝛁 ⋅ 𝒋𝒆,&

𝑗∥ =
𝑒𝑛-

0.51𝑚-𝜈-
1

𝑛(,$%
∇∥ 𝑛-𝑇- − 𝑒∇∥Φ+ 0.71∇∥𝑇-

𝜛 = ∇&
𝑐'𝑚(𝑛(,$%

𝐵'
∇&Φ +

𝑒
𝑚(𝜔%('

∇&'
𝑝(,&
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Vorticity

Parallel current 

Electron density 𝑛- = 𝑛(,$% + ∇&
𝑐'𝑚(𝑛(,$%
𝑒𝐵'

∇&𝜙

Stiff term (due to the large parallel 
conductivity) – treat implicitly  

Include polarization corrections 
(required for high-k stabilization)

Electron temperature 𝑇- = 𝑐𝑜𝑛𝑠𝑡

• Captures ITG and resistive drift and ballooning modes
• Includes neoclassical ion physics effects
• Allows for efficient cross-separatrix simulations

Consider a simple isothermal 
electron model

Neglect the pressure 
corrections term
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Discretization: locally field-aligned multiblock approach

• Toroidal direction is divided into block (wedges)
• Control cells are field-aligned (F-A) within each block

To exploit strong anisotropy of microturbulence  

block n+1 block n

The approach is conceptually similar to the FCI approach*, but maintains flux 
surfaces (presently, including the X-point region)

𝜃
𝜓

𝜓, 𝜃 - fine ⊥ coordinates
𝜙 - coarse ∥ coordinate

EDGE (COGENT)

𝜓,𝜙 - fine ⊥ coordinates
𝜃 - coarse ∥ coordinate

CORE (GYRO, BOUT)

Efficient for X-point modeling

Efficient for high-n wedge 
modeling

*Hariri et al, Comp. Phys. Comm.  (2013)
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Interpolation is employed at a block interface

Non-conformal 
block interface

Quadratic, 𝑂 Δ"
# , 1D interpolation is 

used to compute data in ghost cells

Ghost cell of 
block n

block n
block n+1
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X-point geometry is handled by using poloidal sub-blocks

Problem: X point → singular 
topology

COGENT approach: use  
multiblock grid technology

Strong anisotropy of plasma transport 
motivates the use of flux-aligned grids

Dorr et al., JCP (2018);

Physical domain (DIII-D)

Computational 
multiblock domain

Mapping
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Vorticity model

𝑁!, 𝑁", 𝑁#, 𝑁$∥, 𝑁&
76,4,576,32,24

𝑑𝑡 = 0.016 ⁄𝑅' 𝑉()

1 step ↔ 6s 
Cori 1408 cores

Model geometry 
𝑅0 = 1.6 𝑚, 𝑞~2.5, 𝑅𝐵1 = 3.5 𝑇 ⋅ 𝑚, Δ𝜙2-3$- = ⁄2𝜋 8

𝜎∥ ↔ ⁄𝑉%4 𝑞𝑅&𝜈'~0.6

IC: Local Maxwellian, T0 = 4 keV  

Boundary conditions (Φ):
• Self-consistent BC @ core boundary 
• Zero-Dirichlet @ all other boundaries

Boundary conditions (f):
• Thermal Maxwellian baths 

(consistent with initial conditions)

Resolution

Time step

Performance

5D full-F simulations of plasma transport in a SN geometry

Ion-ion collisions 𝜈((~0.01𝑉%(/𝑞𝑅&

Field-aligned multiblock version
⁄Φ − Φ 𝑒𝑇'

R

Z

ϕ

Bϕ

B

Dorf and Dorr, Contrib. Plasma Phys. (2022)
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4D axisymmetric simulations can be used to provide 
insights into neoclassical transport and initial relaxation

Outer midplane lineouts @ 59.7 R0/VTi
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The role of X-point geometry can be explored by comparing 
with the counterpart toroidal annulus simulations

⁄̅𝜏!𝑉"! 𝑞𝑅#~6.0
𝜂$# = 2

Φ ≡ 0
⁄̅𝜏!𝑉"! 𝑞𝑅#~6.0
𝜂$# = 2

⁄̅𝜏!𝑉"! 𝑞𝑅#~0.15
𝜂$# = 2

⁄̅𝜏!𝑉"! 𝑞𝑅#~6.0
𝜂$# = ∞

⁄Φ − Φ 𝑒𝑇$

Dorf and Dorr, Contrib. Plasma Phys. (2022)

Increase conductivity to 
suppress resistive effects 

(ITG dominant case)

Increase density gradient to 
observe ITG stabilization
(“H-mode-like” behavior)

Suppress self-consistent Φ to 
observe ITG reemergence →  
demonstrates the role of Er

Decrease conductivity to 
observe resistive drift and 

ballooning modes 
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Increased Er-well and pedestal build-up is 
consistent with turbulence suppression

̅𝜏$𝑉"%
9𝑞𝑅!

~0.14 ̅𝜏$𝑉"%
9𝑞𝑅!

~0.094

High conductivity 
(suppressed turbulence)

Low conductivity 
(enhanced turbulence)

T0	=Ti0=	4	keV,	Te=400eV
Ion-ion collisions 𝜈((~0.01𝑉%(/𝑞𝑅&

Model geometry parameters
𝑅0 = 1.6 𝑚, 𝑞~2.5,

𝑅𝐵1 = 3.5 𝑇 ⋅ 𝑚, Δ𝜙2-3$- = ⁄2𝜋 8

Plasma parameters
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Radial EfieldCOGENT hybrid (reduced) model includes ion-scale resistive and ITG turbulence, background Er, 
NC and ion-orbit loss effects and can be used to study L-H transition and other edge-relevant 

phenomena while providing substantial speed-up over fully kinetic models  

Φ− Φ
𝑒𝑇!

Φ− Φ
𝑒𝑇!
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COGENT hybrid model has been used to simulate edge 
turbulence for realistic DIII-D discharge parameters* 
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n0 = 1.6x1019 m-3

T0 = 528 eV

Outboard radial profiles 
(time averaged t=0.35-0.4 ms)

Density time history @ 
1cm inside LCFS

⁄Φ − Φ 𝑒𝑇&@ 𝑡 = 0.28𝑚𝑠

ni/n0

• BC: fixed ni and Ti
at radial boundaries

• Prescribed electron 
temperature

https://atom.scidac.io/usecase.html*AToM SciDAC use case DIII-D 150142, with artificially increased density gradient   

𝑅𝐵1 = 3.5 𝑇 ⋅ 𝑚,
Δ𝜙2-3$- = ⁄2𝜋 8

• Ion collisions and RS 
terms are turned 
OFF for simplicity

∇𝐵
𝑁& , 𝑁' , 𝑁( , 𝑁)∥, 𝑁+
80,4,2144,32,12

𝑑𝑡 = 0.14 𝜇𝑠

1 step ↔ 9s 
Cori 1728 cores

Resolution

Time step

Performance
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Hybrid GK ions – fluid electron model is extended to 
include electromagnetic (EM) effects

1 −
𝑐'

𝜔Q-'
Δ&

1
𝑐
𝜕𝐴∥
𝜕𝑡

= −∇∥Φ+
∇∥𝑝-
𝑒𝑛-

+ 0.51
𝜈-
𝜔Q-'

𝑐Δ&𝐴∥ +
0.71
𝑒

∇∥𝑇-

−Δ&𝐴∥ =
4𝜋
𝑐
𝑗∥

𝜕
𝜕𝑡
𝜛 + ∇& 𝑐

−∇&𝜙×𝑩
𝐵'

𝜛 = ∇& ⋅ 𝑒 6
2𝜋
𝑚(

𝐵∥∗𝑓(,$%𝒗𝒎𝒂𝒈𝑑𝑣∥𝑑𝜇 − 𝑐
∇&𝑝-×𝐛

𝐵
+ ∇ ⋅ 𝒃𝑗∥ Quasi-neutrality

Electron parallel force balance

Ampere’s law

Simplified slab case verification

𝜕𝑛(
𝜕𝑡

= 𝑐∇Φ×
𝒃
𝐵
⋅ ∇𝑛0

𝜔 +
𝑐'𝑘&'

𝜔Q-'
𝜔 − 0.51𝑖𝜈- =

𝑘∥'𝑉R'

𝜔' 𝜔 −
𝑉S
|𝐿T|

𝑘&𝜌S

Simulation model [presently does not include peeling-drive (𝜹𝑩) terms[

Adopting

Dispersion for resistive drift instability with EM effects  

Electromagnetic 
induction

Electron
inertia

Electron
friction

Drift effects

we obtain
Simulation 
parameters:

Te=Ti=100eV
B = 2 T
n0 =1013 cm-3

mi = mp
Ln = 5 cm
𝑘,𝜌- = 2
2𝜋/𝑘∥ =30 m
𝑉"!𝑘∥/𝜈! = 1

Potential time history

Ln
(Φ
/Φ

#
) 

time (10-5 s)

𝛾./0 = 0.302
V-
𝐿1

𝜔./0 = 0.231
V-
𝐿1

𝛾"2 = 0.306
V-
𝐿1

𝜔"2 = 0.234
V-
𝐿1

Simulations

Theory
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ImEx framework with physics-based preconditioner is used 
to handle fast Alfven-wave time scale 

Physics-based preconditioner* (PC) includes 
Alfven-wave, electron inertia and resistive terms

𝜕
𝜕𝑡
∇&

𝑐'𝑚(𝑛
𝐵'

∇&Φ = −
c
4𝜋

∇ ⋅ 𝒃Δ&𝐴∥

1 −
𝑐'

𝜔Q-'
Δ&

1
𝑐
𝜕𝐴∥
𝜕𝑡

= −∇∥Φ+ 0.51
𝜈-
𝜔Q-'

𝑐Δ&𝐴∥

When included into the ImEx Newton-Krylov
framework, the PC system to be solved is

𝛼∇&
𝑐'𝑚(𝑛
𝐵'

∇&Φ +
c
4𝜋

∇ ⋅ 𝒃Δ&𝐴∥ = 𝑟1 (1)

1
𝑐
𝛼 − 𝛼 + 0.51𝜈-

𝑐'

𝜔Q-'
Δ& 𝐴∥ + ∇∥Φ = 𝑟R (2)

𝛼 ∝ Δ𝑡^_ is a constant coefficient 

To further simplify adopt the following 
ad-hoc approximations

∇&
%!`"T
a!

∇&Φ → Δ&
%!`"T
a!

Φ

∇ ⋅ 𝒃Δ&𝐴∥ → Δ&∇ ⋅ 𝒃𝐴∥

Valid for slow variations 
of background profiles

Not valid in toroidal 
geometry, working on 

improvements  

• Approximate solution of Eq. (1) as

Φ =
𝐵%

𝛼𝑐%𝑚#𝑛
−
c
4𝜋 ∇ ⋅ 𝒃𝐴∥ + Δ'()𝑟* (3)

• Substitute (3) into (2) and solve the 
second-order elliptic equation for 𝐴∥

• Elliptic equations are efficiently solved 
by AMG methods (from Hypre)

*Similar ideas are expressed in B. Dudson et al, arXiv 1209.2054 (2012)
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Efficiency of the physics–based PC is successfully 
demonstrated for the RBI mode  

1 −
𝑐'

𝜔Q-'
Δ&

1
𝑐
𝜕𝐴∥
𝜕𝑡

= −∇∥Φ+ 0.51
𝜈-
𝜔Q-'

𝑐Δ&𝐴∥

𝜕
𝜕𝑡
∇&

𝑐'𝑚(𝑛
𝐵'

∇&Φ =
2𝑐𝑇-
𝐵

𝒃×𝜿 ⋅ ∇ 𝑛 − 𝑛0 −
c
4𝜋

∇ ⋅ 𝒃Δ&𝐴∥

RBI 3field simulation model [omits 𝜹𝑩 and drift terms]
𝜕𝑛
𝜕𝑡

= ∇ ⋅ 𝑐∇Φ×
𝒃
𝐵
𝑛
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R0=1.6 m, RBɸ=3.5Tm, wedge = 𝜋/10

Increased resistivity 𝜎∥ ↔ ⁄𝜈-^_𝑉b# 𝑞𝑅0~0.15

Taking q~4, Ln~3 cm, 𝑘∥~1/𝑞𝑅0
𝜔R = 𝑉R𝑘∥ = 5.6 c$

d%
,   𝛾e =

'f&
g%h'

= 10.3 f&
g%

Simulation parameters

minor radius (m)

Background profiles

𝑛! 10%!𝑚(+ Safety factor, q
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𝑑𝑡#/- = 6.25×10(%𝑅!/𝑉.

Time (R0/Vs)

Mode structure⁄𝑒𝜙 𝑇-

𝑡 = 1.9𝑅0/𝑉S

Time history



18

Preliminary results from the implicit hybrid GK-
ions -- fluid electrons EM model (work in progress)

Linear 
stage

Nonlinear 
stage

• DIII-D edge parameters, N0=2x1019 m-3, Ti=Te=100 eV, mi=2mp , 𝜎∥ ↔ ⁄𝜈')*𝑉+. 𝑞𝑅,~0.75
• Include drift terms (DRBI mode is captured), and background Er, ion-ion collisions -- OFF
• Profiles shape [𝑛,(𝜓), 𝑞 𝜓 ] same as for the 3field fluid RBI test

⁄Φ − Φ 𝑒𝑇' ⁄Φ − Φ 𝑒𝑇'Potential perturbations Potential perturbations
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MHD fluid module is added to COGENT framework

• Ideal MHD equations with viscosity

• Finite volume scheme for conservative fluid 
variables implemented for general non-orthogonal 
coordinates.

• Constrained transport method for B (divB=0 to 
machine precision)

• ImEx time integration with option to treat stiff 
viscosity term in equation of motion implicitly

• Multiple flux computing methods
– Characteristic-based upwinding (TVD,QUICK,WENO5) 

via Lax Flux splitting – diffusive, good for β~1 systems 
like Z-pinches where shocks are typical

– ZIP upwinding – nondiffusive, stable to linear red-black 
modes and nonlinear antidiffusion modes. Good for 
long timescale tokamak simulations

3D simulation of peeling-ballooning mode in 
a toroidal annular geometry

• 3D toroidal wedge geometry
• ZIP upwinding for fluxes
• Linearized JxB force & isothermal model
• Equilibrium parameters: RBT = 6 T-m, q=1.6 
• initial Perturbation scales with cos(10ɸ - 16𝜃)

t = 0

t = 3.7 µs

Simulation model
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Conclusions

• 5D continuum full-F gyrokinetic cross-separatrix simulations of edge 
plasma transport are being extended to include EM effects

• COGENT discretization is distinguished by 
– High-order finite-volume discretization 
– Mapped multiblock grid technology and locally field-aligned grids

• Present capabilities include
– Gyrokinetic Poisson and vorticity model (extended to include EM effects)
– Various collision models (including nonlinear Fokker-Planck)
– Implicit-Explicit (ImEx) time integration capabilities
– Fluid models for electron and neutral species 

• In progress/future work: 
– Applications: L-mode turbulence, L-H transition, divertor heat-flux width
– Capabilities: electromagnetics, kinetic electrons, FLR effects


