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Abstract

Traditional partial differential equation (PDE) solvers can be computationally
expensive, which motivates the development of faster methods, such as reduced-
order-models (ROMs). We present GPLaSDI, a hybrid deep-learning and Bayesian
ROM. GPLaSDI trains an autoencoder on full-order-model (FOM) data and simul-
taneously learns simpler equations governing the latent space. These equations are
interpolated with Gaussian Processes, allowing for uncertainty quantification and
active learning, even with limited access to the FOM solver. Our framework is able
to achieve up to 100,000 times speed-up and less than 7% relative error on fluid
mechanics problems.

1 Introduction

Over the last few decades, advances in numerical simulation methods and cheaper computational
power have expanded the use of simulation across various fields, such as engineering design, digital
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twins, and decision making with application including aerospace, automotive, electronics and physics
[16, 7, 2, 10]. Traditional numerical simulations often rely on high-fidelity solvers, which are
generally accurate, but expensive [21, 26, 3]. This has historically motivated the development of
reduced-order-models (ROM) which, at the cost of a drop in accuracy, can be much faster than
high-fidelity full-order models (FOM).

Many ROM methods rely on projecting FOM data into a lower dimensional space, where the
physical system’s governing equations are simpler to solve numerically [4, 22, 24]. Linear projection
methods have been used with great success, but they often struggle with advection-dominated fluid
flow problems [17, 11]. Thus, in recent years, non-linear approaches, using for instance neural
networks, have gained significant popularity [20, 14, 19]. In their work, Champion et. al. [8]
proposed a framework to identify governing dynamical systems in latent space of autoencoders.
These identified governing sets of ordinary differential equations (ODEs), learned using SINDy
algorithms [6, 23, 9, 5, 25], can be used to described the training data dynamics in a much simpler
way. This work has been subsequently extended to reduced-order-modelling by Fries et. al., in a
framework known as Latent Space Dynamics Identification (LaSDI) [11].

In LaSDI, an autoencoder is trained on FOM data, and the set of ODEs governing the latent space
for each corresponding FOM datapoint is identified using SINDy. The ODE coefficients can then be
interpolated with respect to the FOM parameters, and used to predict sets of ODEs associated with any
new test parameters. ROM predictions can then easily be made by integrating the ODEs numerically
and feeding the dynamics into the decoder. This work was later extended in greedy-Latent Space
Dynamics Identification (gLaSDI) [13] by introducing an active learning framework and a joint
training of the autoencoder and the latent space ODEs. During the training, additional data is added
by feeding the model’s prediction into the PDE residual. The simulation parameter yielding the
largest residual error is picked as a sampling point, for which a new FOM run is performed and the
resulting data added to the training set. This strategy allows for collecting data where it is the most
needed, while minimizing the number of FOM runs.

While robust and accurate, gLaSDI requires to have access to the PDE residual for sampling new
data (intrusive ROM). This can be cumbersome and expensive to evaluate, especially when dealing
with multi-scale and/or multi-physics problems, and sophisticated numerical solvers. In this paper,
we introduced Gaussian Process Latent Space Dynamics Identification (GPLaSDI), a new LaSDI
framework with non-intrusive greedy sampling (no residual evaluation required). We propose to use
Gaussian Processes (GP) to interpolate the sets of ODE coefficients, instead of deterministic methods
like in LaSDI and gLaSDI [11, 13]. This allows, for new test parameters, to propagate the uncertainty
over the ODE coefficients to the latent space dynamics, and then to the decoder output. Our approach
has two major advantages: first, we can quantify the uncertainty over ROM predictions. Second, we
can use that uncertainty to pick new FOM sampling datapoints, without relying on the PDE residual.

2 Gaussian Process Latent Space Dynamics Identification

We consider physical systems described by time-dependant PDEs of the following form:

∂u

∂t
= f(u, t, x |µµµ) (t, x) ∈ [0, tmax]× Ω u(t = 0, x |µµµ) = u0(x |µµµ) (1)

The vector of physical quantities u is defined over a time interval [0, tmax] and spatial domain
Ω. The PDE and its initial condition u0 are parameterized by a parameter vector µµµ ∈ D. We
assume that equation 1 can be solved with a high-fidelity FOM simulation, and we denote U(i) =

[u
(i)
0 , . . . ,u

(i)
Nt

]⊤ ∈ R(Nt+1)×Nu the matrix representing a numerical solution for parameterµµµ(i) ∈ D,
computed over Nt time steps and Nu spatial nodes. The collection of Nµ FOM data points is written
U = [U(1), . . . ,U(Nµ)]

We train an autoencoder on U, and denote Z = ϕe(U|θenc) ∈ RNµ×(Nt+1)×Nz the encoder output.
Nz is the latent space dimension, chosen arbitrarily (but such that Nz ≪ Nu). The decoder
output is Û = ϕd(Z|θdec), and the training reconstruction loss is a standard mean-squared-error,
LAE(θenc, θdec) = ||U− Û||22.

The architecture of the autoencoder is chosen such that the time dimension is unchanged. As a result,
the latent space can be interpreted as a dynamical system, described by Nz abstract variables. Hence,
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Figure 1: GPLaSDI framework. (1) Autoencoder/SINDy joint-training. (2) GP interpolation. (3)
ROM prediction with uncertainty quantification. (4) Active learning strategy.

the encoder effectively transforms data described by a PDE into data described by an (unknown)
system of ODEs, written as:

Ż(i) = ψDI(Z
(i)|µµµ(i)) (2)

Ż(i) refers to the time derivative of the set of latent space variables for data point i ∈ [[1, Nµ]].
For each training parameters µµµ(i), we use an algorithm known as SINDy (Sparse Identification of
Non-Linear Dynamics) [6] to learn a suitable set of explicit governing ODEs. The key idea of SINDy
is to approximate ψDI as a linear combination between a library of potential candidate terms involved
in the ODEs, Θ(Z(i)), and a matrix of coefficients Ξ(i):

Ż(i) ≈ Θ(Z(i)) ·Ξ(i)⊤ = ˙̂Z
(i)

(3)

The library Θ can include linear and non linear candidate terms, function of each latent space
variable. The choice of terms is arbitrary, a broader variety of terms may capture the latent space
dynamics more accurately, but also yield more complex sets of ODEs. In this paper, we restrict
the library to linear terms only. The coefficient matrices are learned by minimizing the standard
mean-squared-error, LSINDy(Ξ) = ||Ż− ˙̂Z||22, with Ξ = [Ξ(1), . . . ,Ξ(Nµ)] ∈ RNµ×Nz×Nl (Nl is the
number of candidate terms in Θ). To ensure the learning of robust coefficients and sufficiently well
conditioned sets of ODEs, the autoencoder and the SINDy coefficients are trained altogether.

In order to make ROM predictions for a new test parameterµµµ(∗) ∈ D, we need to solve the correspond-
ing set of ODEs, with coefficients Ξ(∗). In LaSDI [11] and gLaSDI [13], Ξ(∗) is estimated through
deterministic interpolation of Ξ. In this paper, we propose to use Gaussian Processes (GPs). This has
two main advantages: first, GPs are less prone to overfitting, which may provide a more accurate
interpolation of the latent space governing dynamics. Second, GPs provide confidence intervals over
their predictions. As a result, we can train GPs such that GPΞ : µµµ(∗) 7→ {m(Ξ(∗)), s(Ξ(∗))}, where
m and s is the predictive mean and standard deviation of Ξ(∗), respectively. Note that in practice,
we train Nz ×Nl GPs, one for each ODE coefficient. We can than sample sets of ODE coefficients
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from the predictive Gaussian distribution, Ξ(∗,d) ∼ N (m(Ξ(∗)), s(Ξ(∗))2), and integrate each set
of ODEs, Ż(∗,d) = Θ(Z(∗,d)) ·Ξ(∗,d)⊤, where d ∈ [[1, Ns]] and Ns is the number of samples. Each
sample set is solved using a numerical integrator (e.g. Forward Euler), and using initial condition
z
(∗)
0 = ϕe(u

(∗)
0 |θenc). Finally, we feed each latent space sample dynamics, Z̃(∗,d) into the decoder to

obtain a sample set of ROM predictions. We denote E[Ũ(∗)] and V[Ũ(∗)] the ROM mean prediction
and variance, respectively.

During the training phase, we adopt a variance-based greedy sampling strategy for active learning.
We first train the autoencoder and the SINDy coefficients during Nup epochs. Then, GPs are trained
over the current set of learned ODE coefficients, Ξ. For a finite number of test point µµµ(∗) ∈ Dh ⊂ D
(where Dh is a discretized subset of the parameter space), we make ROM predictions and perform a
new FOM simulation for the test parameter that yielded the highest ROM variance:

µµµ(Nµ+1) = arg max
µµµ(∗)∈Dh

[
max
(t,x)

V[Ũ(∗)]
]

(4)

The new data point, U(Nµ+1), is added to the rest of the training set and the training is resumed until
the (preset) maximum number of epochs is reached. Figure 1 summarizes the GPLaSDI algorithm.

3 Results and Discussion

We demonstrate the performance of GPLaSDI on a rising bubble problem. A hot fluid bubble is
immersed in a colder fluid, causing the bubble to rise-up in a mushroom-like convective pattern. The
solved PDE are the coupled compressible unviscid Navier-Stokes, advection-diffusion and energy
conservation equations. In this example, implementing the residual would typically be lengthy and
cumbersome, showcasing the interest of GPLaSDI.

We consider 2 simulation parameters: the initial bubble temperature, θc, and its initial radius, Rc

(µµµ = {θc, Rc}). We employ HyPar [1, 12], a finite-difference PDE solver to perform high fidelity
FOM simulations, and the numerical scheme used is described in [15]. We consider a fully connected
autoencoder, with softplus activation, a 10100-1000–200–50–20–5 architecture for the encoder, and a
symmetric architecture for the decoder (Nz = 5). We use Adam [18], with learning rate 10−4 over
6.8 · 105 epochs, and consider a 0.25 weighing factor for the SINDy loss. We use only linear terms in
the SINDy library, and consider Ns = 20 GP samples. We use GPs with RBF kernels, and a greedy
sampling rate every 4 · 104 epochs. For testing purposes, the parameter space is discretized over a
21× 21 grid (Dh). As for the error metric, we consider the maximum relative error:

e(U(∗),E[Ũ(∗)]) = max(||E[Ũ(∗)]−U(∗)||2/||U(∗)||2) (5)

For baseline comparison, we compare the performance of GPLaSDI with uniform grid sampling.
Figure 2.a shows the maximum relative error across the test parameter space Dh with GPLaSDI, and
figure 2.b shows the results with uniform grid. With GPLaSDI, the worst maximum relative error is
6.2%, and the largest errors occur for parameter values located towards the bottom right corner of the
parameter space. GPLaSDI outperforms the baseline, which exhibits higher errors for smaller values
of Rc (Rc < 153), with the worst maximum relative error reaching 8.3%. The model is capable of
efficiently sampling data points for which the uncertainty if the highest, and ultimately reduce the
prediction error. Figure 2.c shows GPLaSDI maximum predictive standard deviation. It correlates
reasonably well with the relative error, confirming that uncertainty-based sampling is effective in
reducing model error.

During 20 test runs, the FOM requires an average wall clock run-time of 89.1 seconds when utilizing
16 cores, and 1246.8 seconds when using a single core. On the other hand, the ROM model achieves
an average run-time of 1.25 · 10−2 seconds, resulting in an impressive average speed-up of 99, 744×.
Note that this speed up is obtained using only the predictive mean of the GPs for estimating the latent
space set of ODEs (i.e. Ns = 1). All the code to reproduce the results in this paper can be found at
github.com/LLNL/GPLaSDI.
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(a) (b) (c)

Figure 2: (a) GPLaSDI maximum relative error (in percent). (b) LaSDI with uniform grid sampling
maximum relative error. (c) GPLaSDI maximum predictive standard deviation. The 4 corner red
boxes represents the parameters used in the initial training dataset. The black boxes represent the
parameters sampled during training.

4 Broader Impact

We have introduced GPLaSDI, a fully data-driven non-intrusive ROM algorithm, with an uncertainty-
based active learning approach. GPLaSDI is applicable to any type of physics or scientific phe-
nomenon, does not requires direct access of even knowledge of the physical governing equations, and
is capable of quantifying its own prediction uncertainty, while achieving remarkable speed-up.
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