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A B S T R A C T

This paper explores strategies to transform an existing CPU-based high-performance computational fluid
dynamics solver, HyPar, for compressible flow simulations on emerging exascale heterogeneous (CPU+GPU)
computing platforms. The scientific motivation for developing a GPU-enhanced version of HyPar is to simulate
canonical turbulent flows at the highest resolution possible on such platforms. We show that optimizing
memory operations and thread blocks results in 200x speedup of computationally intensive kernels compared
with a CPU core. Using multiple GPUs and CUDA-aware MPI communication, we demonstrate both strong
and weak scaling of our GPU-based HyPar implementation on the NVIDIA Volta V100 GPUs. We simulate
the decay of homogeneous isotropic turbulence in a triply periodic box on grids with up to 10243 points (5.3
billion degrees of freedom) and on up to 1,024 GPUs. We compare the wall times for CPU-only and CPU+GPU
simulations. The results presented in the paper are obtained on the Summit and Lassen supercomputers at Oak
Ridge and Lawrence Livermore National Laboratories, respectively.
1. Introduction

Turbulence is characterized by the seemingly chaotic, yet corre-
lated, motion of fluid elements (in both the Eulerian and Lagrangian
sense) over a range of spatial and temporal scales. The distinguishing
features of turbulence, however, are the lack of clear separation be-
tween the scales of motion (unlike in the kinetic theory of gases), the
large number of degrees of freedom, and the large range of length and
time scales. Although it is accepted that the dynamics of turbulence
is described by the Navier–Stokes equations (NSE), it is prohibitively
expensive to simulate all the length and time scales of motion. For
many cases of interest, it is practically impossible to simulate tur-
bulence without appropriate models to account for the effect of the
small scales on the evolution of the turbulent flow field. As a result,
various theoretical statistical models have been proposed to explain the
underlying mechanisms in turbulent flow by decomposing the velocity
𝑈⃗ , pressure 𝑝, and temperature 𝑇 fields into the average and fluctuating
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quantities, 𝐴(𝑟, 𝑡) = 𝐴̄(𝑟, 𝑡) + 𝑎(𝑟, 𝑡), where 𝐴̄ and 𝑎 respectively denote
the ensemble average ⟨𝐴⟩ and fluctuating 𝑎 terms in the decomposition.
Approaches for formulating statistical models of turbulence [1], such as
direct interaction approximation [2,3] and eddy-damped quasi-normal
Markovianization [4], proposed evolution equations for higher-order
correlations that are obtained by taking moments of the NSE. In these
equations, the temporal evolution of correlations, on the left-hand side
of the NSE, calls for modeling higher-order moments on the right-hand
side of the NSE, where again the strong spatiotemporal correlations
between the velocity components ⟨𝑢𝑚𝑖 𝑢

𝑛
𝑗 ⟩ and between other flow quan-

tities have precluded attempts to close the hierarchy of the moment
equations and devise a universal model for turbulent flows.

The availability of massively parallel computing platforms offers a
route for direct numerical simulation (DNS) of the Navier–Stokes equa-
tions for canonical flows on simple geometries and increasing Reynolds
numbers. One such canonical flow that continues to be simulated on
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newer parallel computing platforms is that of forced isotropic turbu-
lence in a triply periodic box. Using innovative methods to stir the flow
(to ensure that the turbulence does not decay), pseudo-spectral solvers
for incompressible flows have been used to simulate homogeneous
isotropic turbulence (HIT) on boxes consisting of 12 2883 grid points
to achieve a maximum Reynolds number 𝑅𝑒𝜆 = 1300 (where 𝜆 denotes
he Taylor microscale) [5]. These DNS flow fields can then be used to
alidate existing theories and inform the development of subgrid mod-
ls by exploring the general two-point, two-time, space–time velocity
orrelation, defined by

(𝑥⃗, 𝑡) = ⟨𝑢𝑖(𝑥⃗, 𝑡)𝑢𝑗 (𝑥⃗ + 𝑟, 𝑡 + 𝜏)⟩, (1)

here 𝑢𝑖, 𝑢𝑗 (𝑖, 𝑗 = 1, 2, 3) denotes the fluctuating velocity components,
𝑥⃗ + 𝑟 = (𝑥1 + 𝛿𝑥1, 𝑥2 + 𝛿𝑥2, 𝑥3 + 𝛿𝑥3) denotes the distance between two
oints in the flow, 𝜏 denotes the temporal window, and ⟨.⟩ denotes
he ensemble average. The flow is said to be decorrelated when the
orrelation decreases with increasing |𝑟| and 𝜏 and vanishes above a
ritical distance |𝑟|𝑑 and 𝜏𝑑 that denote the decorrelation length and
ime, respectively. Similar expressions can be defined to correlate other
uantities, such as the pressure (𝑝) and temperature (𝑇 ) between two
oints and at two different times.

While a considerable body of literature exists for HIT simulations
f incompressible flows, HIT simulations of compressible flows are
ot as extensive. DNS of compressible turbulence requires solving
he energy equation in addition to the momentum equations. An-
ther complication that arises in simulating compressible flows is the
ppearance of shocks and shocklets in compressible HIT, where the
low properties change abruptly across the shocklets. Hence, shock-
apturing numerical methods are necessary that also resolve all the
urbulent scales of motion with minimal dissipation and dispersion
rrors. Needed are high accuracy, spectral resolution, and the abil-
ty to capture unsteady shocklets/shock waves. Weighted essentially
onoscillatory (WENO) schemes [6–9] use solution-dependent recon-
truction to achieve high-order accuracy for smooth flows and yield
onoscillatory solution across shocks and other discontinuities. Al-
hough WENO schemes of very high orders have been designed [10,11],
hey suffer from relatively poor spectral resolution and are ill-suited
or the DNS of turbulent flows. Several strategies were introduced to
mprove their dissipation and dispersion properties. One strategy is
mproving the calculation of the nonlinear weights [11–15] such that
hey attain their optimal values when the flow is smooth but not well-
esolved. Another strategy is improving the spectral resolution of the
nderlying finite-difference scheme, for example, bandwidth-optimized
chemes [16], dissipation-relation-preserving scheme [17], and mini-
ized dispersion schemes with controllable dissipation [18–21]. Given

he high spectral resolution of compact or Padé–type schemes [22],
related strategy has been using compact finite-difference schemes

s the underlying linear discretization; examples include weighted
ompact schemes (WCNS) [23–25] and CRWENO [26–30] schemes.
s an alternative to the WENO schemes, targeted essentially nonoscil-

atory (TENO) schemes were introduced [31] that modify the stencil
election procedure to reduce the dispersion and dissipation errors at
igh wavenumbers; they have been successfully applied to the DNS of
ompressible turbulent flows [32]. Many efforts combine these ideas
n hybrid schemes, for example, hybrid central-upwind finite-difference
chemes [33] and hybrid compact–WENO [34–36].

GPUs require a fundamentally different programming paradigm
rom that of CPUs. Some memory operations that are efficient on CPUs
ould cause a serious performance degradation on GPUs. The past
ecade has seen several GPU implementations of computational fluid
ynamics (CFD) codes for simulating turbulent flows. Linear, high-
rder finite-difference schemes were implemented on GPUs and applied
o the DNS of turbulent flows, for example, 4th-order [37] and 6th-
rder [38,39] central schemes. These studies reported speedups by
actors of 10–20 when compared with a CPU-only implementation.
2

igh-order WENO schemes have been implemented and assessed on
PUs [40–42], including on one of the fastest supercomputers [43].
ne conclusion of these studies was that the WENO kernel was the
ost expensive component for a typical NSE code. The GPU imple-
entation of WENO-type schemes was applied to the Favre-averaged
SE [44,45]. DNS codes based on WENO-type schemes have been

mplemented on GPUs to simulate supersonic turbulent flows, such
s the shock–turbulence interaction [46], supersonic channel flow,
hock–boundary layer interaction [47], and supersonic compression-
xpansion slope flow [48]. Given the poor spectral resolution of the
raditional WENO scheme, GPU implementations of more modern vari-
nts such as the TENO schemes were developed [49–51]. Given the
uitability of compact/pseudo-spectral schemes, a linear 6th-order tridi-
gonal compact scheme with filtering was implemented for GPUs [52]
o simulate the evolution of eddies. However, the algorithm suffered
rom an inefficient implementation of the tridiagonal solve on the
PU that did not scale well with the problem size. Heterogeneous

CPU+GPU) implementations of two shock-capturing compact schemes,
he weighted compact nonlinear scheme (WCNS) and hybrid dissipative
ompact scheme, were developed [53] and applied to simulate flow
round aircraft configurations.

The objective of this paper is a computationally efficient heteroge-
eous (CPU+GPU) implementation of an existing scalable, CPU-parallel
hock-capturing CFD algorithm for the DNS of canonical turbulent
lows. We report our strategies to accelerate an existing open-source
PI-parallel C/C++ code, HyPar [54], with GPUs. We consider the

ifth-order WENO scheme (WENO5) [7]; in subsequent publications,
e will consider high-resolution alternatives that are better suited for
NS of turbulent flows, such as the compact-WENO and low-dissipation
ENO schemes. Since efficient memory operations are crucial for fully

tilizing the massive parallel computing capability of GPUs, our focus is
n optimizing the memory access patterns of HyPar on GPUs. In partic-
lar, we aim to avoid slow memory transactions and reduce as many
asted computational resources (such as thread blocks) and memory

ransactions as possible. Our optimization approach results in more
han 200 times faster computation time using multiple threads on a
PU compared with a CPU core. Using multiple GPUs and CUDA-aware
PI communication, we demonstrate the scalability of our GPU-based

mplementation. We evaluate strong and weak scaling and investigate
he impact of communication cost on the overall computation time. We
lso simulate the decay of HIT in a periodic domain with up to 10243

grids points (∼ 5× 109 billion degrees of freedom) on up to 1024 GPUs
and compare the wall time with MPI-only simulations on up to 8192
CPU cores. As a highlight, our current GPU-based implementation can
perform 100 time steps on a grid with 10243 (∼109) points in less than
30 s using 1024 GPUs.

Our implementation presented here is among the earliest attempts
at simulating scale-resolved compressible HIT on DOE leadership-class
heterogeneous (i.e., CPU+GPU) platforms. Recent work for incompress-
ible turbulence at such scales includes simulations with up to ∼21 bil-
lion grid points on 1280 NVIDIA P100 GPUs [55,56] and a pseudo-
spectral algorithm for grids with up to 18, 4323 points and 18,432

VIDIA V100 GPUs [57]. The simulations presented in this paper were
arried out on the Summit supercomputer at the Oak Ridge Lead-
rship Computing Facility (OLCF) [58] (referred as ‘‘OLCF/Summit’’
n the rest of the paper) and the Lassen supercomputer at Lawrence
ivermore National Laboratory [59] (referred as ‘‘LLNL/Lassen’’). The
mplementation described here has been released in the latest version
f HyPar [54] under an MIT license.

The rest of the paper is organized as follows. In Section 2 we
introduce our simulation: the governing equations for compressible
Navier–Stokes equations, the numerical methods, and the HIT decay
example. Section 3 describes our kernel design principles for efficiently
implementing the existing CPU code-base on GPUs, with a specific
focus on optimizing its memory access patterns. In Section 4 we report
the computational performance and scalability tests of the GPU-based
implementation. Section 5 describes high-resolution simulations of HIT
decay on very fine grids and compares the CPU+GPU and CPU-only

wall times. We summarize our conclusions in Section 6.
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Fig. 1. Illustration of cell centers and cell interfaces on a grid line along a specific dimension.
2. Background

In this section we briefly introduce governing equations for com-
pressible Navier–Stokes equations, their numerical methods, and the
isotropic turbulence decay example. The example will be used to eval-
uate the computational performance of our GPU-based implementation
in Section 4.

2.1. Governing equations

The nondimensional, compressible Navier–Stokes equations [60]
are expressed as a system of hyperbolic-parabolic partial differential
equations as
𝜕𝐮
𝜕𝑡

+ 𝜕𝐟
𝜕𝑥

+
𝜕𝐠
𝜕𝑦

+ 𝜕𝐡
𝜕𝑧

= 𝜕𝐟𝑣
𝜕𝑥

+
𝜕𝐠𝑣

𝜕𝑦
+ 𝜕𝐡𝑣

𝜕𝑧
, (2)

where 𝐮 = [𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝑒]T is the vector of conserved variables. The
convective fluxes are

𝐟 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜌𝑢
𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤

(𝑒 + 𝑝) 𝑢

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐠 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑣𝑤

(𝑒 + 𝑝) 𝑣

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜌𝑤
𝜌𝑢𝑤
𝜌𝑣𝑤

𝜌𝑤2 + 𝑝
(𝑒 + 𝑝)𝑤

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

where 𝜌 is the density, 𝑢, 𝑣,𝑤 are the Cartesian components of the
velocity, 𝑝 is the pressure, and 𝑒 is the internal energy given by

𝑒 =
𝑝

𝛾 − 1
+ 1

2
𝜌
(

𝑢2 + 𝑣2 +𝑤2) , (4)

and 𝛾 = 1.4 is the heat coefficient ratio. The viscous fluxes are

𝐟𝑣 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
𝜏𝑥𝑥
𝜏𝑦𝑥
𝜏𝑧𝑥

𝐯 ⋅ 𝝉𝑥 − 𝑞𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐠𝑣 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
𝜏𝑥𝑦
𝜏𝑦𝑦
𝜏𝑧𝑦

𝐯 ⋅ 𝝉𝑦 − 𝑞𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐡𝑣 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
𝜏𝑥𝑧
𝜏𝑦𝑧
𝜏𝑧𝑧

𝐯 ⋅ 𝝉𝑧 − 𝑞𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎦

; (5)

the viscous stresses are given by

𝜏𝑖𝑗 = 𝜇
𝑀∞
𝑅𝑒∞

[(

𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗
𝜕𝑥𝑖

)

− 2
3
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

]

, (6)

where 𝑅𝑒∞ and 𝑀∞ are the reference Reynolds and Mach numbers,
respectively, 𝜇 is the normalized coefficient of viscosity, 𝐯 ≡ (𝑢, 𝑣,𝑤) is
the velocity vector, and

𝝉 (⋅) =
(

𝜏𝑥⋅, 𝜏𝑦⋅, 𝜏𝑧⋅
)

. (7)

The thermal conduction terms are

𝑞𝑖 = −
𝜇

(𝛾 − 1)
𝑀∞

𝑅𝑒∞ 𝑃𝑟
𝜕𝑇
𝜕𝑥𝑖

, (8)

where 𝑇 = 𝛾𝑝∕𝜌 is the temperature and 𝑃𝑟 = 0.72 is the Prandtl number.

2.2. Numerical method

The physical domain is discretized by using a three-dimensional grid
with 𝑁 points in each dimension. The convective terms on the left-hand
side of (2) are discretized with the conservative finite-difference formu-
lation [8,9] and the WENO5 scheme [7]. This section briefly describes
the spatial discretization of the convective flux 𝐟 along 𝑥; this can be
3

extended trivially to the convective terms along the other dimensions.
The spatial derivatives in the viscous terms on the right-hand side
(RHS) are discretized by using fourth-order central finite differences.
We thus obtain an ordinary differential equation (ODE) in time; this is
evolved by using the third-order total-variation-diminishing (TVD) and
fourth-order Runge–Kutta methods. A more detailed description of the
numerical methodology is available in prior publications [26,27,61].

We describe the upwind discretization of the convective terms by
considering an arbitrary grid line along 𝑥 and ignoring the other
dimensions. The derivative is computed at a grid point 𝑗 as

𝜕𝐟
𝜕𝑥

|

|

|

|𝑗
= 1

𝛥𝑥

(

𝐟𝑗+ 1
2
− 𝐟𝑗− 1

2

)

+  (𝛥𝑥𝑝) , (9)

where the locations 𝑗 ± 1∕2 denote the cell interfaces (see Fig. 1) and
𝑝 is the order of the discretization scheme. The numerical flux at the
cell interface, 𝐟𝑗+ 1

2
, is computed by using the Roe scheme [62] with the

Harten entropy fix [63]:

𝐟𝑗+ 1
2
= 1

2

(

𝐟𝐿
𝑗+ 1

2
+ 𝐟𝑅

𝑗+ 1
2

)

− 1
2
|

|

|

|

𝐴𝑗+ 1
2

|

|

|

|

(

𝐮̂𝑅
𝑗+ 1

2
− 𝐮̂𝐿

𝑗+ 1
2

)

, (10)

where the superscripts 𝐿,𝑅 denote left- and right-biased discretizations,
respectively. The dissipation matrix,

|

|

|

|

𝐴𝑗+ 1
2

|

|

|

|

, is computed from the

eigensystem evaluated at the Roe-averaged state at the cell interface
𝑗 + 1∕2 as
|

|

|

|

𝐴𝑗+ 1
2

|

|

|

|

= 𝑋𝑗+ 1
2

|

|

|

|

𝛬𝑗+ 1
2

|

|

|

|

𝑋−1
𝑗+ 1

2
, (11)

where 𝑋 is the matrix with columns as the right eigenvectors and 𝛬 is
a diagonal matrix with the eigenvalues as its entries.

Each scalar component of 𝐟𝐿,𝑅
𝑗+ 1

2

and 𝐮̂𝐿,𝑅
𝑗+ 1

2

is computed by using
the WENO5 scheme. We describe this method for a left-biased scalar
variable, 𝑓𝐿

𝑗+ 1
2

; the procedure for a right-biased scalar variable, 𝐟𝑅
𝑗+ 1

2

,
can be obtained by reflecting the expressions around the cell interface
𝑗 + 1∕2. We drop the superscript 𝐿 in the text below.

WENO schemes use a solution-dependent interpolation stencil selec-
tion [6,7] to achieve high-order accuracy where the solution is smooth
and to avoid oscillations across discontinuities. The WENO5 scheme is
constructed by identifying three third-order interpolation schemes at
the cell interface; the final interpolation method is their weighted sum,
where the weights depend on the smoothness of the stencils underlying
the corresponding third-order interpolation. These weights approach
optimal values for smooth solutions; consequently, the method achieves
fifth-order accuracy. In the presence of discontinuities or sharp gradi-
ents, the weights corresponding to those stencils approach zero. The
final method has a stencil biased away from the discontinuity, thus
avoiding numerical oscillations.

The three third-order interpolation schemes and their optimal
weights at cell interface 𝑗 + 1∕2 are

𝑓 1
𝑗+1∕2 = 1

3
𝑓𝑗−2 −

7
6
𝑓𝑗−1 +

11
6
𝑓𝑗 , 𝑐1 =

1
10

, (12)

𝑓 2
𝑗+1∕2 = −1

6
𝑓𝑗−1 +

5
6
𝑓𝑗 +

1
3
𝑓𝑗+1, 𝑐2 =

6
10

, (13)

𝑓 3
𝑗+1∕2 = 1

3
𝑓𝑗 +

5
6
𝑓𝑗+1 −

1
6
𝑓𝑗+2, 𝑐3 =

3
10

. (14)

The fifth-order interpolation scheme at 𝑗 + 1∕2 is obtained as

𝑓𝑗+1∕2 =
∑

𝑐𝑘𝑓
𝑘
𝑗+1∕2
𝑘=1,2,3
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Fig. 2. Direct numerical simulation of HIT in a triply periodic domain discretized by a 1283 grid. The solution is obtained at a final time of 𝑡∕𝜏 = 3, where 𝜏 is the turbulent time
scale.
= 1
30

𝑓𝑗−2 −
13
60

𝑓𝑗−1 +
47
60

𝑓𝑗 +
27
60

𝑓𝑗+1 −
1
20

𝑓𝑗+2. (15)

The solution-dependent weights are computed as

𝜔𝑘 =
𝛼𝑘

∑

𝑘 𝛼𝑘
; 𝛼𝑘 =

𝑐𝑘
(

𝜖 + 𝛽𝑘
)𝑝 ; 𝑘 = 1, 2, 3, (16)

where 𝜖 = 10−6 is a small number to prevent division by zero and 𝛽𝑘
are the smoothness indicators for the stencils:

𝛽1 =
13
12

(𝑓𝑗−2 − 2𝑓𝑗−1 + 𝑓𝑗 )2 +
1
4
(𝑓𝑗−2 − 4𝑓𝑗−1 + 3𝑓𝑗 )2, (17)

𝛽2 =
13
12

(𝑓𝑗−1 − 2𝑓𝑗 + 𝑓𝑗+1)2 +
1
4
(𝑓𝑗−1 − 𝑓𝑗+1)2, (18)

𝛽3 =
13
12

(𝑓𝑗 − 2𝑓𝑗+1 + 𝑓𝑗+2)2 +
1
4
(3𝑓𝑗 − 4𝑓𝑗+1 + 𝑓𝑗+2)2. (19)

The WENO5 scheme is obtained by multiplying the third-order in-
terpolation schemes by the solution-dependent weights instead of the
optimal weights:

𝑓𝑗+1∕2 = =
∑

𝑘=1,2,3
𝜔𝑘𝑓

𝑘
𝑗+1∕2

=
𝜔1
3
𝑓𝑗−2 −

1
6
(7𝜔1 + 𝜔2)𝑓𝑗−1 +

1
6
(11𝜔1 + 5𝜔2 + 2𝜔3)𝑓𝑗

+ 1
6
(2𝜔2 + 5𝜔3)𝑓𝑗+1 −

𝜔3
6
𝑓𝑗+2. (20)

If the solution is locally smooth, 𝜔𝑘 → 𝑐𝑘, 𝑘 = 1, 2, 3, and (20) is
equivalent to (15).

2.3. Example: Isotropic turbulence decay

We simulate the decay of isotropic turbulence in a periodic domain;
this is a canonical turbulent flow problem [64,65] characterized by the
transfer of energy from larger to smaller length scales. Our governing
equations do not include a turbulence model; we thus conduct a direct
numerical simulation by resolving the Kolmogorov scale. The initial so-
lution comprises a divergence-free velocity field with random isotropic
fluctuations that satisfy the following kinetic energy spectrum:

𝐸 (𝑘) = 16
√

2
𝜋
𝑢20
𝑘0

(

𝑘
𝑘0

)4
exp

[

−2
(

𝑘
𝑘0

)2
]

, (21)

where 𝑘 is the wavenumber, 𝐸 is the kinetic energy, 𝑢0 is the root-mean-
square turbulence intensity, and 𝑘0 is the wavenumber corresponding
to the maximum energy. The domain is a cube of length 2𝜋 with
periodic boundaries. The initial density and pressure are constant (𝜌 =
1, 𝑝 = 1∕𝛾). We specify 𝑢 = 0.3 and 𝑘 = 4, resulting in a smooth
4

0 0
Fig. 3. Energy spectrum of the initial and final (𝑡∕𝜏 = 3) solutions.

turbulent flow. The Taylor microscale-based Reynolds number, 𝑅𝑒𝜆 =
𝜌𝑢0𝜆∕𝜇, is specified as 50, where 𝜆 is the Taylor microscale.

Figs. 2(a) and 2(b) show the density and vorticity magnitude con-
tours, respectively, on a two-dimensional plane at 𝑧 = 0 for a solution
obtained at 𝑡∕𝜏 = 3, where 𝜏 = 𝜆∕𝑢0 is the turbulent time scale.
This solution is obtained on a grid with 1283 points and a time step
𝛥𝑡 = 0.025 (CFL ≈ 1). Fig. 3 shows the initial and final energy spectra
for the solution. As the flow evolves and the turbulence decays, we
observe an energy transfer from the lower to higher wavenumbers, as
expected. The 𝑘−5∕3 relationship is also plotted for reference. We use
this example in our subsequent studies.

3. Implementation principles on GPUs

In this section we present our kernel design principles to efficiently
implement HyPar on GPUs, with a specific focus on optimizing its
memory access patterns. Since many core operations of HyPar are
memory-bound, it is crucial for computational performance to avoid
slow memory transactions and to reduce as many wasted compute
resources and memory transactions as possible. To this end, we in-
troduce the following three design principles that target optimized
computational performance on GPUs: (i) implementing lexicographic
thread configuration, (ii) removing data transfers between CPUs and
GPUs during operation, and (iii) performing coalesced memory access.
In the following subsections we introduce these principles one by one
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Fig. 4. Tiling vs. lexicographic over weights computation (16).

with numerical performance comparisons with those of alternative
approaches. All of the numerical experiments in this section have been
performed on a single NVIDIA’s V100 using CUDA.

We note that we have also tried some user-defined caching ap-
proaches, such as manually allocating dynamic shared memory (instead
of relying on the underlying GPU’s automatic caching mechanism)
to share function values in (17)–(19) between different grid points.
However, we observed no gains or even worse performance than when
we relied on the given automatic caching mechanism. Therefore, we
did not employ manual shared-memory management in our implemen-
tation. We believe that such a worse performance with shared memory
is partly due to a significantly improved cache performance of the Volta
architecture, as described in [66, See page 17].

3.1. Lexicographic thread block configuration

By default, we have a one-to-one mapping from threads of a GPU
kernel into the grid points of a discretization scheme so that each
thread is assigned to a single grid point. One way to implement this
mapping is to assign threads in the same lexicographic order of the
coordinate values of the grid points. In this case, each thread block
is one-dimensional, and the order of threads within a block follows
the same lexicographic order of the corresponding grid points. An
alternative way to implement the mapping is to use tiling. For example,
if a grid is 64 × 64, we can generate thread blocks, each of which is
of size 32 × 8 (256 threads per block). A total of 16 thread blocks are
needed to cover the entire grid in this case.

The tiling approach is intuitive; however, it could cause many
wasted threads when some dimension of the grid is not a multiple of
the number of threads of a warp. For example, if a given grid is of size
65 × 64, the previous 32 × 8 thread block scheme will result in some
thread blocks having many inactive threads. In this case, thread blocks
covering grid points with 65 as its 𝑥-coordinate have only 8 active
threads among 256 threads. Such an unfavorable grid naturally occurs
when we perform computation using ghost points, which are added to
the existing grid scheme.

Fig. 4 compares the computation time between the tiling and lexico-
graphic thread block configurations, obtained from a kernel computing
the weights (16). The grid employed is of size 65×64×64, and the thread
block configuration for the tiling approach is 32 × 8. As we see in the
figure, the tiling approach shows a slower computation time than that
of the lexicographic configuration. Similar results were obtained with
different block configurations for tiling.

3.2. No data transfers between CPUs and GPUs

When we solve the three-dimensional Navier–Stokes equations (2)
using the WENO5 scheme, our profiling results,2 described in Fig. 5
show that about 90% of the computation time has been spent in the five
core operations: WENO – computing weights (16) Interp – calculation
of the flux at cell interfaces (20), Upwind – computing the upwind flux
using Roe’s scheme (10), Parabolic – computing the viscous terms
on the RHS of (2), and Derivative – computing the derivatives in
the viscous terms using fourth-order central finite differences. Since

2 We used gprof available at https://sourceware.org/binutils/docs/gprof.
5

Fig. 5. Percentage of time spent on core operations.

Fig. 6. Computation and data transfer times for WENO.

these operations are defined for each grid point independently, they
can be computed in parallel, providing an opportunity for acceleration
on GPUs. Our initial implementation of computing weights (WENO) on
GPUs shows about two orders of magnitude of faster computation time
than on CPUs.

However, if we include data transfer time to initiate the com-
putation on the device and return the results back to the host, the
overall computation time significantly degrades. In Fig. 6 we present
the computation times on CPUs and GPUs and data transfer time for
one function call of the WENO routine for 64×64×64 grid. Although the
computation time has improved by more than 400 times on GPUs, the
time for data transfer dominates the overall computation time, making
it even slower than on CPUs. The high data transfer time is attributed
to the large memory size for storing weights, which is around 400 MB.

To avoid such significant degradation, we implement all operations
that process data entirely on GPUs, except for the initial data read and
return of a final solution. Since data required for each GPU kernel is
processed only on GPUs, they can be readily found in the GPU’s global
memory. Therefore, we do not have to transfer any data between CPUs
and GPUs during operation, removing one of the main performance
bottlenecks. This allows us to recover the fast computation time on
GPUs as shown in Fig. 6. We note that we also used CUDA-aware MPI
for MPI implementations to support multiple GPUs so that we do not
have to communicate via staging through CPUs.

3.3. Coalesced memory access

In Fig. 7(a) we show the memory layout of our original CPU-based
code, where we use double precision for floating-point computation.
In the figure, each coordinate value of (𝑥̄, 𝑦̄, 𝑧̄) denotes the maximum
grid coordinate value of the corresponding dimension, and the super-
script/subscript on 𝑣 represents the index of a grid point/variable,
respectively. The five variables for each grid point are located one after
the other in memory. Because grid points are allocated in memory in
lexicographic order and are accessed sequentially along with their five
variables, memory accesses exhibit locality in this case, leading to fast
memory operations through a high cache hit ratio.

However, this memory layout gives rise to 40-byte strided memory
accesses on GPUs, as shown in Fig. 8(a), potentially incurring more
memory transactions than needed. Unlike the CPU case, 32 threads
in a warp are executed in lockstep on GPUs. Since each grid point
has five variables of size 8 bytes each (double precision), a warp
accessing the first variable of 32 grid points will result in 10 128-
byte memory transactions footnoteThe granularity of L1 cache update
is 128-byte. assuming that the accessed data have not been found in
cache. Bus utilization (the ratio of data actually read to fetched) is 20%
(= 256∕1280 × 100) in this case.

https://sourceware.org/binutils/docs/gprof
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Fig. 8. Different strides for different memory layouts.

Fig. 9. Effect of different strides on memory bandwidth.

In contrast, if we allocate each variable of grid points one after the
ther as shown in Fig. 7(b), we will need only 2 128-byte memory
ransactions with 100% bus utilization (= 256∕256 × 100), as shown in
ig. 8(b). Therefore, coalesced memory access provides more efficient
emory transactions.

Although bus utilization is low in the former case, later accesses to
ther variables might be served via cache, resulting in similar overall
emory access time to that of the latter case. However, this expectation
epends on the lifetime of fetched data in cache. The amount of fetched
ata is proportional to the number of grid points. Since cache size is
imited (128 kB for L1 cache on NVIDIA’s Volta architecture), for larger
umbers of grid points the likelihood of the eviction of data in cache
ecomes higher, reducing their lifetime in cache.

Fig. 9 demonstrates the effect of the aforementioned two strided
ccesses on memory bandwidth with respect to varying grid sizes. In the
igure, the 𝑥-label represents the size of each dimension; for example,
6

6 represents 16 = |𝑥| = |𝑦| = |𝑧|. Since we have the same number
of grid points along each dimension, the total number of grid points
is 16 × 16 × 16 in this case. The memory bandwidth was measured on
the kernel to compute the weights (16). We observe that the speedup
of 8-byte strided access with respect to 40-byte strided access becomes
larger as we increase the grid size. If data were frequently found in
cache for 40-byte strided access, the bandwidth ratio between those
two access methods would be similar and stay constant. However, the
speedup is amplified as we increase the grid size, suggesting that there
have been many more wasted memory transactions for 40-byte strided
access than those of 8-byte strided access.

4. Computational performance

In this section we present the computational performance of our
GPU-based implementation on the isotropic turbulence decay example
described in Section 2.3. In Section 4.2 we compare its computation
time with that of the CPU-based implementation. We demonstrate the
scalability of our implementation using multiple GPUs in Section 4.3.

4.1. Setting

We use the same parameters for the isotropic turbulence decay
example as described in Section 2.3 except for time step, which we
set to 0.002. Since we are interested mainly in the speedup of the
computation time of our GPU-based implementation, we perform 100
time steps and measure the wall time for all experiments in this section.

The experiments in this section were performed on OLCF/Summit;
each compute node has 6 NVIDIA Volta V100 GPUs and 2 POWER9
CPU sockets with 22 physical cores each and 4 hardware threads on
each physical core.

4.2. One GPU vs. one CPU core

Fig. 10 presents the wall times of one GPU and one CPU core,
respectively, for executing 100 time steps over varying grid sizes. From
the results, we make two observations. The first observation is that up
until 643 the grid size is not large enough to fully utilize the massive
parallel computing capability of GPUs. Although the grid size becomes
8 times larger when we change its size from 323 to 643, the computation
time on GPUs increases by just 4.46x. This behavior is in contrast to the
proportional increase of wall times on CPUs as we increase the grid
size. The disproportional increase of the computation time on GPUs
between grids with 323 and 643 points implies that there are many idle
computation units when we solve over grids with 323 points or less.

Once we reach a grid with 643 points, however, the computational
resources on GPUs start to saturate. This is verified by checking the
computation time between grids of sizes 643 and 1283: the wall time
increases exactly at the same rate as the increase of the grid size in this
case. As shown in the figure, for grids having more than 643 points
his proportionality is maintained, implying that we are extensively
aking use of GPUs. In the case where multiple GPUs are employed

s in Section 4.3, our observation provides a guideline for determining
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Fig. 10. One GPU vs. one CPU core for 100 time steps.

Fig. 11. Strong scaling over a grid with 2563 points.

he appropriate number of grid points to be assigned to each GPU that
revents underutilization.

We note that a grid with 2083 points is the maximum size that HyPar
can run on one GPU because of the 32 GB memory limit on V100. For
V100 with 16 GB of memory, the maximum size is around 1603. We
also note that we did not measure the computation time on the CPU
for the largest grid, since it is expected to be more than 5 h based on
its consistent increase in computation time as the grid size increases.

Our second observation is that the computation time with multiple
threads on one GPU is about 200 times faster than that on one CPU
core. The speedup is largely attributed to the acceleration of the WENO
routine: we achieved about 400 times faster computation time com-
pared with that of the CPU-based code. Since it takes about 45% of
the total computation time on CPUs as shown in Fig. 5, the improved
computation time of the WENO routine significantly affects the overall
acceleration on GPU. However, not all routines showed such large
gains. For the Interp and Upwind routines, the gains were about
a factor of 100 and 250, respectively. The reason is that they are
computationally less involving than the WENO routine.

We note that the accelerations for smaller grids are not as large
s those for larger grids as shown in Fig. 10, since they are not
arge enough to fully utilize GPUs, as we have seen in the preceding
bservation.

.3. Multiple GPUs using MPI

We demonstrate scalability of HyPar by evaluating strong and weak
7

scaling over varying numbers of GPUs and grid points. Communication w
Table 1
Grid shape per GPU for decomposing 2563 grid.

# GPUs Grid shape per GPU

8 128 × 128 × 128
16 64 × 128 × 128
32 64 × 64 × 128
64 64 × 64 × 64

128 32 × 64 × 64
256 32 × 32 × 64
512 32 × 32 × 32

Fig. 12. Weak scaling over up to 64 GPUs and 6403 grid.

Fig. 13. Ratio of communication to computation cost.

between GPUs was performed via CUDA-aware MPI, which allowed us
to directly communicate between memories of multiple GPUs on the
same or different nodes without staging them through CPUs.

Fig. 11 presents our strong-scaling results. We fix the number of grid
points to 2563 and compute the speedup over up to 512 GPUs. Since

grid with 2563 points cannot be loaded on a single GPU because of
ts memory limit, the 𝑥-axis starts from 8 GPUs so that each GPU is
ssigned to 1283 grid points. Table 1 presents the grid shape per GPU

3
e used for decomposing 256 grid for our strong-scaling experiments.
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Table 2
Simulation resources used and wall times per time step (seconds) for GPU-enabled and
CPU-only simulations of HIT decay on grids with 5123 and 10243 points.

Grid # nodes GPU–enabled simulation MPI–only simulation

Number of GPUs Wall time Number of MPI ranks Wall time

5123 16 64 (4 × 4 × 4) 0.42 512 (8 × 8 × 8) 5.5
128 512 (8 × 8 × 8) 0.083 4096 (16 × 16 × 16) 0.72

10243 128 512 ( 8 × 8 × 8) 0.42 4096 (16 × 16 × 16) 5.5
256 1024 (16 × 8 × 8) 0.23 8192 (32 × 16 × 16) 2.8

From the results, we observe that our GPU implementation scales
ell with the number of GPUs. However, we observe that the increase

ate of the speedup diminishes as the number of GPUs increases. The
eason for this decrease is that the MPI communication cost becomes a
ominating factor to the overall cost.

The wall time for 8 GPUs was 24.62 s, and it took about 3.14
for the MPI communication. In this case, the communication to

omputation percentage ratio was 12% (= 3.14∕24.62 × 100). For 64
PUs, however, the ratio became 45% (= 2.40∕5.24 × 100), and it was

58% (= 1.11∕1.90 × 100) for 512 GPUs. Since our implementation on
PUs is significantly faster than the CPU-based implementation, the

mpact of the communication cost quickly becomes substantial. We note
hat the diminishing rate seemed to be accelerated when we started to
mploy 323 grids (for 128–512 GPUs). We think this is partly because
PUs were not fully utilized for such small grids, as we discussed in
ection 4.2.

For weak-scaling tests, we used three different grid schemes per
PU: 64 × 64 × 64, 128 × 128 × 128, and 160 × 160 × 160. The size of

he original grid increases proportionally to the number of GPUs: for
4 GPUs with 160× 160× 160 (128× 128× 128 and 64× 64× 64) grid per
PU, the shape of the original grid is 640 × 640 × 640 (512 × 512 × 512
nd 256 × 256 × 256); hence, 4 GPUs are assigned to each dimension.

Fig. 12 presents our weak-scaling results in terms of efficiency. A
imilar trend of diminishing efficiency for larger numbers of GPUs has
een observed, as with our strong-scaling results. The diminishing rate
argely depends on the ratio of communication to computation cost. As
e see in Fig. 13, the ratio is higher for 643 grid, 43% for 64 GPUs, than

hose for 1283 and 1603 grids, 27% and 23% for 64 GPUs, respectively.
herefore, the 643 grid showed a worse efficiency than those of the 1283

nd 1683 grids. In Fig. 13, ‘‘Comp’’ denotes the pure computation time
n each GPU. In all cases, the computation time on individual GPUs
as almost the same.

. HIT decay simulation

In this section we simulate the decay of isotropic turbulence on
wo large grids: 5123 points (6.7 × 108 degrees of freedom) and 10243

5.3 × 109) points. The simulation setup is the same as described in
ection 2.3.3 The results presented here are obtained on LLNL/Lassen;
ach node has 4 NVIDIA Volta V100 GPUs and 2 IBM Power9 CPUs
ith 40 cores available for computations, where each core is capable of
hardware threads. The computational performances of GPU-enabled

imulations and MPI-only simulations are compared by maximizing the
arallelism on the same number of compute nodes. The 5123 grid is
imulated on 16 and 1,28 nodes; thus GPU-enabled simulations use 64
nd 512 GPUs, respectively, and MPI-only simulations use 512 and 4096
PI ranks, respectively. The 10243 grid is simulated on 128 and 2,56

odes; GPU-enabled simulations use 512 and 1024 GPUs, respectively,
nd MPI-only simulations use 4096 and 8192 MPI ranks, respectively.
ven though each CPU core is capable of 4 hardware threads, the

3 This specific example is available in the HyPar repository [54]
in the subdirectory Examples/3D/NavierStokes3D/DNS_Isotropic
TurbulenceDecay_CUDA .
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MPI-only simulations have only 1 on a core; we observed performance
egradation with 2 or 4 MPI ranks per core.

Table 2 summarizes the resources used for these simulations and
the observed wall times per time step for the 3-stage total-variation-
diminishing (TVD) Runge–Kutta method in seconds (this does not
include the time for file I/O). Overall, we see an excellent speedup
for GPU-enabled simulations. While the 5123 grid simulation on 1,28
nodes is around 8 times faster with the GPU, all the other cases show
that the GPU code is 12–13 times faster than the MPI code. We note that
for GPU-enabled simulations, the CPU cores do not do any meaningful
computations other than the initial transfer of the solution to the GPU
and the transfer of the solution back to the CPU for writing to disk when
required. The MPI-only simulations do not use the GPUs at all. Thus,
both these approaches do not use the compute nodes to their maximum
potential.

Fig. 14(a) shows the kinetic energy spectra at the final time 𝑡∕𝜏 = 3
for solutions obtained on with 643, 1283, 2563, 5123, and 10243 points.
The time step corresponds to a CFL of around 0.4 for all the simulations.
We verified that the difference between the solutions obtained with
the GPU-enabled code and the MPI code was within machine roundoff
(10−15). The energy spectra show that the finer grids are able to resolve
the higher wavenumbers (smaller length scales), as expected. Fig. 14(b)
shows the time evolution of the energy spectrum for the solution on the
10243-points grid; as the flow evolves, kinetic energy is transferred to
the smaller length scales. This underscores the need for efficient scale-
resolving simulations. Figs. 15(a) and 15(b) show the Schlieren and
vorticity magnitude plots for the solution obtained on the grid with
10243 points; the flow is dominated with small-scale structures as well
as localized regions of very high gradients.

6. Conclusions

In this work we explore the development of HyPar [54], a CPU-
based C/C++ high-performance code, to run efficiently on GPU-based
computing platforms. The naive use of the SIMD directives in an exist-
ing CPU codebase, by primarily targeting memory operations across the
CPU–GPU bus, leads to severe performance degradation on GPUs be-
cause GPUs require a fundamentally different programming paradigm
from that of CPUs. A bottom-up approach that focused on forming the
equations directly on GPUs significantly reduces traffic between CPUs
and GPUs, across the PCIe bus/NVLink, and improves the performance
of the code significantly.

This work focuses on the three-dimensional compressible Navier–
Stokes equations discretized by a nonlinear fifth-order WENO scheme
in space and an explicit Runge–Kutta method in time. This combination
of numerical discretization schemes allows us to exploit high potential
parallelism and scalability while maintaining high numerical accuracy
and spectral resolution. We demonstrate our results on a canonical
turbulent flow problem, the decay of isotropic turbulence in a periodic
domain characterized by the transfer of energy from larger to smaller
length scales. We conduct DNS studies by resolving the Kolmogorov
scale on a grid of size 10243 (∼5 billion degrees of freedom).

The implementation of a high-order shock-capturing algorithm in
this paper is among the earliest for simulating HIT in compressible
flows on heterogeneous platforms. We carry out simulations on up to
1024 GPUs with CUDA-aware MPI communication across the nodes.
Our results demonstrate that the optimizations proposed in this paper
lead to more than 200x reduction in computation time using multiple
threads on a GPU compared with a single CPU core. The scalability of
the GPU-accelerated code is evaluated by using strong and weak scal-
ing, and we investigate the impact of communication cost on the overall
computation time. We compare our GPU-enabled and MPI-only im-
plementations on DOE leadership-class supercomputers with multicore
CPUs and GPUs, and we observe that the GPU-enabled code performs
around 12–13 times faster on the these architectures. The strategies pre-
sented in this paper extend to conventional shock-capturing schemes,
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Fig. 14. Energy spectrum for the HIT decay simulations.
Fig. 15. Isotropic turbulence decay: Solution in the 𝑥–𝑦 plane at 𝑧 = 0 on a grid with 10243 points.
including low-dissipation, bandwidth-optimized WENO schemes that
are better suited to DNS studies. In ongoing work, we are exploring
nonlinear compact schemes, such as the CRWENO or hybrid compact-
WENO schemes with higher spectral resolution. However, they require
the direct solution of tridiagonal systems of equations; this presents
additional challenges for GPUs.
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