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ABSTRACT

This work presents a combination of cell-node and cell-centered compact finite difference scheme for the approximation of third
derivatives involved in Korteweg-de Vries (KdV) equations. This approach employs a half-shifted derivative construction at cell
centers, avoiding the need for compact interpolation, thereby removing transfer errors; hence, it improves spectral resolution
and maintains high-order accuracy. Fourier analysis is performed to show the spectral properties of the proposed formulation,
which provides higher spectral resolutions as compared to node-based compact schemes. A filtering strategy is incorporated to
suppress high-frequency oscillations without compromising the accuracy of the numerical scheme, and the total variation dimin-
ishing Runge Kutta (TVDRK3) method is applied for time integration. Numerical experiments on linear, nonlinear, and coupled
KdV systems are conducted, and a comparative analysis with cell-node compact schemes confirms that the proposed scheme

consistently reduces errors by up to an order of magnitude and achieves high spectral resolution properties.

1 | Introduction

High-order compact finite difference schemes have emerged as
essential tools for the accurate numerical solution of partial
differential equations involving higher-order spatial derivatives,
particularly in problems characterized by multiscale dynam-
ics [1]. Of particular importance is the precise approximation of
third-order derivatives, which play a central role in dispersive
wave equations of the form

U+ gy + f(Uy =0 (1.1)

where the third-order spatial derivative term f(u), ., captures the
dispersive effects that balance nonlinear steepening represented
by g(u),. This subtle interplay between nonlinearity and disper-
sion gives rise to remarkable wave phenomena, including the for-
mation and propagation of solitary wave solutions that maintain

their shape over extended distances [2, 3]. Among dispersive
models, the Korteweg-de Vries (KdV) equation is a canonical
example, extensively studied for its ability to describe nonlin-
ear wave propagation in a wide range of physical contexts. These
include shallow water dynamics [4], plasma physics [5], optical
communication systems [6], semiconductor device modeling [7],
aeroacoustics [8, 9], electromagnetic simulations [10], and tec-
tonic processes [11]. Challenges arise in convection-dominated
scenarios, where the coefficients of the third-derivative terms
may be small or even zero. Accurate simulation of such equations
requires spatial discretizations that not only achieve high formal
order but also retain spectral-like fidelity across a broad range of
wavenumbers.

The significance of the dispersive KdV equation and its appli-
cations has motivated the development of a variety of analytical
and numerical approaches such as differential quadrature
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method [12], the inverse scattering transform [13], and the
variational iteration method (VIM) introduced by Wazwaz [14]
to address problems involving the Burgers’, cubic Boussinesq,
KdV, and K(2,2) equations. Furthermore, numerical strategies
such as the local discontinuous Galerkin method [15], adap-
tive mesh refinement (AMR)-based line methods [16], and
high-order compact schemes coupled with low-pass filters [17]
have been successfully applied. More recently, weighted essen-
tially non-oscillatory (WENO) schemes have been explored,
including variants based on polynomial bases [18] and on
exponential bases [19].

In this work, we focus on higher-order schemes and review
the available literature on finite difference methods and their
compact variants. High-order finite difference (FD) methods
are broadly classified into explicit and compact (Padé-type)
schemes. Explicit schemes use wide stencils whose size grows
with accuracy, whereas compact schemes employ narrow stencils
but require solving linear systems. Although compact schemes
achieve a spectral-like resolution and higher accuracy [1], they
involve additional complexity due to matrix inversions. Classical
compact schemes, pioneered by Lele [1], have been extensively
applied to the approximation of first-, second-, and third-order
derivatives. Their effectiveness comes from the ability to achieve
a spectral-like resolution using narrow stencils, which offers an
optimal balance between efficiency and accuracy. However, exist-
ing approaches encounter certain limitations, such as

« cell-node compact schemes achieve good accuracy but suffer
from reduced resolution at short wavelengths;

« cell-centered compact schemes attempt to improve resolu-
tion but introduce interpolation steps between staggered
grids [20, 21], leading to transfer errors that degrade accu-
racy and stability.

Further, compact schemes have been explored with a combi-
nation of weighted essentially non-oscillatory schemes [22] to
improve solution near discontinuities, but they suffer from a com-
plex algorithmic structure, hence increasing computational cost.
Another disadvantage with higher-order schemes is that they
often suffer from high-frequency noise, generated by discretiza-
tion errors and nonlinear interactions, which can contaminate
the solution and induce numerical instabilities. To mitigate this
issue, spatial filtering techniques have been widely developed
and applied. Lele [1] introduced systematic low-pass spatial fil-
ters that suppress spurious oscillations while preserving solution
accuracy. Among these, Padé-type implicit filters offer greater
selectivity than explicit alternatives, enabling precise control of
spectral properties. The effectiveness of such filters depends on
their order, cutoff frequency, and the frequency of application
during time integration.

Recent advances in central compact schemes have demonstrated
approaches that incorporate both cell-node and cell-center infor-
mation, which can significantly enhance spectral properties. Liu
et al. [23] proposed a compact scheme for first derivatives that
combines cell-centered and cell-node values, improving accu-
racy, formal order, and wave resolution without additional com-
putational cost, though at the expense of increased memory
usage. Wang et al. [24] extended this idea to second-order spatial

derivatives within the acoustic wave equation, equating weighted
summations computed on both cell nodes and centers, and
leveraging Taylor series expansions and optimization-based tech-
niques. Motivated by these works [23, 24], the present study
develops a cell-centered compact scheme for third derivatives in
KdV equations, which is first reported in the literature to the best
of the authors’ knowledge.

The methodology of this work is as follows: We develop a
combination of cell-node and cell-centered compact schemes
for third-derivatives with an enhanced spectral resolution for
the KdV equations, termed as third-derivative central com-
pact schemes (TDCCS). Our approach uses function values at
both the cell-nodes and cell-centers to calculate third-order
spatial derivatives at the cell-nodes. The cell-centered values
are treated as independent variables and are evolved alongside
the cell-node values. We determine spatial derivatives at the
cell-centers by half-shifting formula initially developed for the
cell-nodes. This approach slightly increases memory usage, but
it does not add to the computational cost because the compact
interpolation for half-grid values is replaced by a compact deriva-
tive formula applied at the half-grid points. Fourier analysis is
performed to establish the spectral properties of the proposed
schemes, highlighting their superior accuracy and improved
resolution characteristics. Numerical experiments with some
benchmark problems, including both one and two-dimensional
scalar equations and an Ito-type coupled nonlinear system, are
conducted to validate the theoretical predictions of the proposed
schemes. A comparative analysis is performed to demonstrate
the accuracy and robustness of the proposed scheme with
TDCNCS, along with low-pass filters that suppress undesirable
high-frequency instabilities without affecting the remaining
components of the solution.

The structure of this paper is outlined as follows: Section 2 begins
with a review of third derivative cell-node and cell-centered com-
pact finite difference schemes. In Section 3, we present the deriva-
tion of the new scheme, providing detailed insights into the
approach for determining the FD coefficients. In Section 4, a
Fourier analysis is conducted to systematically evaluate the wave
resolution of the proposed schemes. Section 5 briefly introduces
the high-order low-pass filtering scheme employed to mitigate
numerical oscillations. Section 6 presents time integration and
linear stability analysis. In Section 7, numerical examples are
presented to validate the advantages of the proposed method. In
Section 8, we provide some concluding remarks.

2 | Cell-Node and Cell-Centered Compact
Schemes

We begin by examining Lele’s cell-node compact scheme, initially
designed to achieve accuracy up to sixth-order in approximat-
ing the third derivative. In this section, we expand Lele’s work
in two aspects. First, we enhance the cell-node compact scheme,
achieving an improved tenth-order accuracy. Secondly, we extend
it to the cell-centered compact scheme with an accuracy of up to
tenth-order.

We consider numerical approximations to the 1D prototypical
dispersion equations of the form
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FIGURE1 | Thestencil of cell-center and cell-node compact schemes. The cell nodes and cell-centers are denoted by the red circles and blue circles,
respectively.
TABLE1 | The coefficients of TDCNCS schemes.
Scheme a b c a B Order
TDCNCS-E2 1 0 0 0 0 2
TDCNCS-E4 2 -1 0 0 0 4
169 12 7
TDCNCS-E6 n -5 5 0 0 6
TDCNCS-T4 2 0 0 2 0 4
TDCNCS-T6 2 -3 0 Z 0 6
2367 167 1 205
TDCNCS-T8 T80 ~ 1m0 % e 0 8
TDCNCS-P6 2 0 0 2 4 6
i60 s 147 .
TDCNCS-P8 lgl —11874% (5) % —E 8
TDCNCS-P10 s o = 7% ~s 10
ou  0gw)  Pfw) 0 1) The third derivative cell-centered compact scheme (TDCCCS) is

ot ox 0x3

The framework for describing a semidiscrete finite difference is

given by
du}' _ /_f/// (2.2)
dr & i ’

Here, g; and f j” " represent approximations to the spatial deriva-

3
tives % and % at the grid node x; respectively. The
computational domain is discretized uniformly into N points:
X1, Xy, ooy X1, X}, Xj41, ---,Xy. The mesh size is denoted as

Ax = x4 —X;.

Figure 1 illustrates the stencil of cell nodes and the cell cen-
ters. For the computation of the first derivatives g’, the cell node
compact scheme introduced by Lele [1] and the central compact
scheme proposed by Liu et al. [23] are referenced. The linear
cell-node compact scheme with up to sixth-order accuracy [1] is
given by

" " " " "
Bfily+afisy+f; +afi+B5,
_ af/+2 =2fin+2fi1—fi

2Ax3
+bfj+3 =3fim+3fia—fis
8AX3 '

(2.3)

We have extended the expression (2.3) to achieve up to tenth-
order accuracy, denoted as the third derivative cell-node compact
scheme (TDCNCS). The general form is given by

" " U " "
ﬂfj,z"'afj_l +fj +afj+1 +ﬁfj+2

_afj+2 =2fia+2fia—fia

2Ax3
+ bfj+3 =3fim+3fia—fis
8AX3
fj+4 _4fj+1 +4fj—1 - fj—4
+c S0A . (2.4)

given by

n n n " "
BI +af! + [ +afll + B,
R e B

Ax3
Ll T Yy
5Ax3
+ cfj% _ 7fj+% ’ 7fj_% _ fj_% . (2.5)
14Ax3

The left-hand sides of both Equations (2.4) and (2.5) involve
spatial derivatives /" computed at the grid nodes. While the
right-hand side of equation (2.4) relies solely on function val-
ues f ;” at the grid node x;, Equation (2.5) incorporates func-
tion values fj+% at the center Xjyl = %(xj + x;,;) within each
interval x € [x;,x;,,]. The accuracy of these schemes is con-
tingent upon specific choices for the coefficients (a, g, a, b, ¢).
By matching terms in the Taylor series expansion around the
point x;, we can derive conditions for achieving different orders
of accuracy. Tables 1 and 2 explicitly list the coefficients for
the TDCNCS and TDCCCS schemes, respectively. By restrict-
ing the parameter ¢ = f =0, we obtain a family of explicit
schemes. Further, setting « # 0 and f =0 yields tridiagonal
schemes. The combination of & # 0 and f # 0 produces pentadi-
agonal schemes. These three distinct categories are referred to as
TDCNCS-E, TDCNCS-T, and TDCNCS-P, respectively. Their for-
mal order of accuracy is appended to their names for convenient
identification. The truncation error for eighth-order accuracy is
expressed as Qf;“)(x)Ax8 + O(Ax'%), where Q is 3.12192 x 107>
for Equation (2.4) and 6.57252 x 107 for Equation (2.5).

Fourier analysis serves as an effective means for evaluating the
accuracy and resolution characteristics of an FD scheme. The
modified wavenumbers associated with the third-order spatial
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TABLE 2 | The coefficients of TDCCCS schemes.

Scheme a b c 1 p Order
TDCCCS-E2 1 0 0 0 0 2
TDCCCS-E4 2 -2 0 0 0 4
1299 499 259
TDCCCS-E6 o 3 50 0 0 6
TDCCCS-T4 3 0 0 : 0 4
TDCCCS-T6 s 23 0 I8 0 6
10;8279 9%237 24787 3126269
TDCCCS-T8 975200 195040 T 287600 12190 0 8
TDCCCS-P6 20 0 0 134 - 6
4%330 91400 23228 3;3?8
e 2, oo e "
55 77 5 77 5505
TDCCCS-P10 150617762 451853286 225926643 225926643 451853286 10
' - '
30 —(@) '.' 30 30 —(i)
—(ii) ! —(ii)
— (iii) ,-' — (iii)
25 - (iv) ,, 25 25 - (iv)
.| w : ) .| w
220 ----(vi) / £20 220 ----(vi)
.e 1 .o
g ---= (vii) ! H g ---= (vii)
> ese 1 - > ese
C (viii) g C (viii)
3 I . (ix) i’, 3 15 3 5 (ix)
g —Exact ;; g —Exact
10} 10 0}
st 5 st
0 . 0 0 .
0 1 2 3 0 1 2 3
Wavenumber Wavenumber Wavenumber
(a) TDCNCS (b) TDCCCS (c) TDCCCS-CI

FIGURE2 | Plot of modified wavenumber vs. wavenumber for (a) TDCNCS, (b) TDCCCS, and (c) TDCCCS-CL: (i) E2; (ii) E4; (iii) E6; (iv) T4; (v)
Té6; (vi) T8; (vii) P6; (viii) P8; and (ix) P10. The tenth-order pentadiagonal scheme is adopted for the compact interpolation in TDCCCS-CI.

derivative for Equations (2.4) and (2.5) are

a[2sin(w) — sin2w)] + 3[3 sin(w) — sin(3w)]

+% [4 sin(w) — sin(4w)]

"

,

TDCNCS = 1 + 2a cos(w) + 2f cos(2w) ,
(2.6)
2a[3sin(2) - sin(%)] + % [5sin(%) —sin(%)]
+£[7sin(2) — sin(72)]
®Tpeecs = 5 ; ; @7

1+ 2a cos(w) + 2 cos(2w)

Here, the parameter @ = kAx represents the scaled wavenumber,
and o' signifies the scaled modified wavenumber. Exact differ-
ence approximation occurs when the scaled wavenumber « and
the scaled modified wavenumber «’” coincide, as represented by
the equation w = @'’

Figure 2 illustrates the plot of modified wavenumber vs.
wavenumber, representing the resolution properties for
various schemes: (a) TDCNCS, (b) TDCCCS. The schemes
include (i) second-order explicit scheme (E2), (ii) fourth-order
explicit scheme (E4), (iii) sixth-order explicit scheme (E6), (iv)

fourth-order tridiagonal scheme (T4), (v) sixth-order tridiagonal
scheme (T6), (vi) eighth-order tridiagonal scheme (T8), (vii)
sixth-order pentadiagonal scheme (P6), (viii) eighth-order penta-
diagonal scheme (P8), and (ix) tenth-order pentadiagonal scheme
(P10). Notably, for the same operator length, TDCCCS exhibits
significantly enhanced resolution compared to TDCNCS. How-
ever, the implementation of TDCCCS requires the estimation
of function values at the cell centers. The high-order compact
interpolation (CI) scheme represents the most straightforward
method to perform this estimation,

ﬂfj_% +afj_% +fj+% +(1fj+% +ﬂfj+%
zafj+12+fj +bfj+2:fj—1 +cfj+3‘;'fj—2

; (2.8)

where f j+1 Trepresent the interpolated values at the midpoints
2

G+ %). The transfer function corresponding to (2.8) is

acos(%’) + bcos(%‘”) +c cos(%‘”)

1 + 2a cos(w) + 2f cos(Rw)

Tey(w) = (2.9)
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TABLE 3 | The coefficients of the transfer function.

Scheme a b c a B Order
CI-E2 1 0 0 0 0 2
CI-E4 2 -2 0 0 0 4
75 25 3
CI-E6 2 - o 0 0 6
CI-T4 2 0 0 z 0 4
CI-T6 g % 0 % 0 6
25 5 1 5
1
CI-P6 % g 0 g - 19—0 6
CI-P8 ; 5 (1) H 0 8

The coefficients in Equation (2.8) can be determined by match-
ing the truncated expansion (TE) coefficients corresponding to
different orders of accuracy, which are listed in Table 3. We use
the notation TDCCCS-CI to represent TDCCCS combined with
the CI scheme. To achieve greater precision in the interpolated
function values at the midpoints, a larger interpolation stencil
is required, leading to an increased computational cost. In this
study, we employ the tenth-order penta-diagonal CI scheme to
calculate function values at the cell-centers within the frame-
work of TDCCCS-CI. Figure 2cillustrates the dispersion relations
of TDCCCS-CI for various accuracy levels. When compared to
Figure 2b, it becomes evident that the use of CI results in a notice-
able reduction in resolution for the TDCCCS, as it introduces
transfer errors.

3 | Central Compact Schemes
for Third-Derivatives

This section introduces the methodology for designing third
derivative central compact schemes (TDCCS). The stencil in the
cell-centered compact schemes, as defined by Equation (2.5),
includes both grid points and half-grid points, denoted as {;j —
2j=2j=3-Lj—3.0+3.i+Lj+3,j+2,j+3}. However,
only the values corresponding to the cell centers, specifically
{j— %,j - %,j - %,j + %,j + %,j + g},areutilizedincomputing
derivatives at the cell nodes {j — 2,j — 1, j,j + 1, j + 2}. Employ-
ing both the values at the cell nodes {j — 2, —1,/,j +1,j + 2}
and the cell centers {j — %,j - %,j - %,j+ %,j + %,j + %} could
potentially result in a compact scheme with increased order accu-
racy and improved resolution [23, 24]. Inspired by this concept,
we propose a new category of third derivative central compact
schemes (TDCCS) represented by the following formula:

be determined using the high-order CI method, as described in
Equation (2.8). Nevertheless, as previously discussed in the pre-
ceding section, employing the high-order CI approach may intro-
duce transfer errors that undermine the precision of TDCCS. To
ensure the accuracy of the cell-center values, the values at the cell
centers are stored as independent computational variables, and
the identical scheme is employed to compute updating values on
cell nodes. This involves a straightforward approach by shifting
the indices in Equation (3.1) by %

B +af” + f af + B
=3 T It It

4f s = 8F, 48, =41,
=a

Ax3
8fj+1 - 12fj+l + lzfj_§ - 8fj—2
+b : 2
5Ax3
8f 2 —20fj+% +20fj_% -8fi3
+c 35A0 . (3.2)

It is important to note that this modification results in a
higher memory demand to store function values in cell cen-
ters. However, there is no corresponding increase in computa-
tional cost, as compact interpolation (2.8) is substituted with the
comparable-cost compact updating (3.2). Both Equations (3.1)
and (3.2), for the same accuracy order, utilize an identical set
of coefficients. To derive the relationships among the coeffi-
cients a,b,c,a, and f in Equation (3.1), we match the Tay-
lor series coefficients of different orders. Solving the resulting
set of linear equations yields schemes ranging from second to
tenth orders. The relationships for different orders are presented
as follows.

Second order:

B, +af + f] +af ]l + B, 1+2a+2f=a+b+c (3.3)
4fiq =81 +8f, 1 —4f;_
=a s A 3 7 ! Fourth order: 135 29
Ax o+ 22ﬁ = % + E 8_0C (3.4)
beH_% - 12fj+1 + 12fj—1 - Sfj_g
* 5Ax3 Sixth order: 13 93 2451
S —20f, - —8f, 2p= =24 220 = 35
8703 =20 i1 + 20750 — 8/5s @+ 2= 760+ Te0 T 1120 (3-5)
+c . 3.1)
35Ax3 )
) Eighth order:
i\.Iote tl;at in tEt?luatlﬁn (3.t1), Wleihmust nlntlallzlt;ompllllte t}ie func- et 255 2054 4069h  30025¢ o)
ion values at the cell-centers. These values at the cell-centers can 2683 T 2688 2688 .
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TABLE 4 | The coefficients of TDCCS schemes.

Scheme a b c a p Order
TDCCS-E4 2 -2 0 0 0 4
361 129 49
TDCCS-E6 T = e 0 0 6
TDCCS-T4 2 0 0 = 0 4
TDCCS-T6 5 -5 0 -3 0 6
TDCCS-TS 58021 _ 109007 1029 _ 1261 0 3
14120 28240 28240 3530 )
TDCCS-P6 7 0 0 i —7a 6
TDCCS-P8 19640 353000 0 _ 33746 147 3
4621 87799 87799 175598
TDCCS-P10 74390155 45752035 4684435 5803114 74747 10
19635801 13090534 39271602 19635801 39271602
30— 30—
— (i) — (i)
---- (i) ---- (i)
251 ---- (iv) 25 - (iv) 7
5 | 5 | W
PN (vi) P (vi)
5205 - (vii) 5201 - (vii) ]
S |- (viii) g |- (viii)
g 15k —Exact g 5l —Exact i
3 st
ERTY Rty 1
= =
5t 5t .
{) 1 1 1 () 1 1 1
0 1 2 3 0 1 2 3
Wavenumber ‘Wavenumber
(a) TDCCS (b) TDCCS-CI
FIGURE3 | Plotof modified wavenumber vs. wavenumber for (a) TDCCS, (b) TDCCS-CI: (i) E4; (ii) E6; (iii) T4; (iv) T6; (v) T8; (vi) P6; (vii) P8; and
(viii) P10.
Tenth order: 4 | Fourier Analysis of the Errors
8, _ 67la  36991b  534991c The main incentive behind developing TDCCS schemes is to
a+2°p = + 3.7) . . . :
7680 7680 7680 precisely resolve small scales in multiscale physical problems.

By solving Equations (3.3-3.7), we can determine the coefficients
for TDCCS. When the schemes are constrained to « = g = 0, they
yield an explicit family of TDCCS. Conversely, if the schemes are
limited to « # 0, various tridiagonal TDCCS are derived. More-
over, when both a« # 0 and g # 0, the result is a family of pentadi-
agonal TDCCS. We label these three distinct types of schemes as
TDCCS-E, TDCCS-T, and TDCCS-P, respectively. For ease of iden-
tification and unambiguous referencing, the formal order of accu-
racy of each scheme type is appended to its respective acronym.
Table 4 presents the coefficients for TDCCS. The CCS-T6 and
CCS-T8 schemes strike a remarkable balance between resolution,
accuracy, and efficiency. They achieve sixth- and eighth-order
accuracy, respectively, while maintaining a tridiagonal matrix
structure, leading to significant computational savings compared
to pentadiagonal schemes with equivalent accuracy. For the latter
numerical analysis, we are considering eighth-order TDCCS. The
truncation error for eighth-order accuracy TDCCS (3.1) is given
by 2.1882 X 107 £V (x)Ax® + O(Ax'). Note that the magnitude
of the leading error term in the TDCCS scheme is an order of
magnitude lower than the corresponding TDCNCS scheme of the
same order.

Consequently, Fourier analysis is conducted on these opti-
mal schemes to evaluate their spectral characteristics. In this
section, we investigate the dispersion and dissipation properties
of TDCCS through Fourier analysis. TDCCS, being a central dif-
ference, eliminates numerically dissipative errors. The Fourier
transformation, a frequently employed tool in finite difference
scheme analysis, is applied to Equation (2.5), and by utilizing
Euler’s formula, the modified wavenumber @’”” of TDCCS can be
derived. It is

2a(8 sin(”f) —4sin(w)] + Z?b [12sin(w) — 8 sin(%”’)]
+2[20sin(w) — 8sin(%2)]

1+ 2a cos(w) + 2/ cos(2w)

" _
@rpees =

(4.1)

Here, o represents the scaled wavenumber with @ = kAx, and
" represents the scaled modified wavenumber.

Figure 3 shows plots comparing modified wavenumber vs.
wavenumber for third derivative approximations using differ-
ent methods: (a) The Taylor expansion-based method (TDCCS)
and (b) the tenth-order pentadiagonal compact interpola-
tion (TDCCS-CI). The schemes encompass various orders and
types, including (i) fourth-order explicit scheme (E4), (ii)
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TABLES5 | The shortest well-resolved wave o, and resolving efficiency e of different schemes with tolerance error ¢, = 0.001.
4-T 6-T 8T 10-P
Schemes/order @ e @ e (o e @ ¢ e
TDCNCS 0.693 0.2205 1.735 0.5523 1.576 0.5018 1.635 0.5205
TDCCCS 0.716 0.2278 1.164 0.3705 1.468 0.4672 1.845 0.5874
TDCCCS-CI 0.715 0.2277 1.162 0.3699 1.445 0.4600 1.682 0.5354
TDCCS-CI 0.722 0.2297 2.037 0.6483 1.769 0.5631 1.748 0.5565
TDCCS 0.722 0.2297 1.386 0.4411 2.459 0.7828 2.998 0.9542
TABLE 6 | The shortest well-resolved wave w, and resolving efficiency e of different schemes with tolerance error ¢, = 0.0001.
4-T 6-T 8T 10-P
Schemes/order @y e @y e @y e @ e
TDCNCS 0.392 0.1248 1.524 0.4850 1.211 0.3855 1.293 0.4114
TDCCCS 0.405 0.1290 0.800 0.2545 1.105 0.3518 1.493 0.4753
TDCCCS-CI 0.405 0.1290 0.799 0.2544 1.097 0.3490 1.362 0.4336
TDCCS-CI 0.407 0.1294 1.994 0.6347 1.468 0.4672 1.420 0.4521
TDCCS 0.407 0.1294 0.785 0.2497 1.689 0.5376 2.288 0.7284

sixth-order explicit scheme (E6), (iii) fourth-order tridiago-
nal scheme (T4), (iv) sixth-order tridiagonal scheme (T6), (v)
eighth-order tridiagonal scheme (T8), (vi) sixth-order pentadiag-
onal scheme (P6), (vii) eighth-order pentadiagonal scheme (P8),
and (viii) tenth-order pentadiagonal scheme (P10). The resolu-
tions achieved by TDCCS surpass those of TDCCCS and TDC-
NCS. The explicit TDCCS even has higher resolution than the
tenth-order pentadiagonal TDCNCS, TDCCCS, and TDCCCS-CI.
Hence, these schemes exhibit spectral-like resolution.

The bandwidth resolving efficiency [1] is a quantitative indicator
of spectral resolution. The resolving efficiency of the FD scheme,
with a specified error tolerance, is defined as

where o is the shortest well-resolved wave component satisfying

" 3
|W| <e,
@
and ¢, represents the error tolerance threshold. This threshold
remains constant when comparing various compact FD schemes.
Tables 5 and 6 present the values of the bandwidth resolving effi-
ciency (e) for various compact finite difference (FD) schemes,
with error tolerances set at ¢, = 0.001 and ¢, = 0.0001, respec-
tively. Tables 5 and 6 highlight that TDCCS exhibits the high-
est resolving efficiency, effectively capturing a broader range of
wavenumbers under the same error tolerance. Specifically, for ¢,
= 0.001, the resolving efficiency of an eighth-order TDCNCS is
0.5018, while that of TDCCS is 0.7828. Similarly, for ¢, = 0.0001,
the resolving efficiency of an eighth-order TDCNCS is 0.3855,
whereas that of TDCCS is 0.5376. Moreover, TDCCS is derived
by evaluating the resolution efficiency for various possible com-

binations of cell nodes and cell centers, and it demonstrates the
best performance among them, although the other combinations
are not presented here.

5 | Low-Pass Spatial Filter

With high-order finite difference schemes, it is necessary to arti-
ficially mitigate all spurious waves while preserving the accuracy
and resolution of the computed solution. This can be performed
by regularizing the computed solution via a high-order low-pass
spatial filter (LPSF) [1]. A tridiagonal filter of high order can be
expressed as

N

Q’Ffj—l + fj + (foj+1 = 2%(fj+,, + fizn) (5.1)

n=0

where f; denotes the given value at point j, and Vi ; denotes the
value after filtering. The transfer function corresponding to (5.1)
is given by

Zf;’zoan cos(nw)

T(w) = 1+ 2a, cos(w)

(5.2)

To determine the unknown coefficients, we require the exclusion
of the highest-frequency mode by imposing the condition 7'(z) =
0. For adaptability, we maintain a as an unrestricted parame-
ter. Subsequently, the remaining N equations can be deduced by
equating the Taylor series coefficients of the left and right sides.
Through this process, Equation (5.1) yields a 2N-th order for-
mula within a 2N + 1 point stencil. It is important to note that
T (w) is real, signifying that the filter alters only the amplitude of
each wave component without impacting the phase. Here a is
a free parameter that satisfies |a;| < 0.5. The coefficients of the
12th-order filter (F12) are given in the Table 7.
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TABLE 7 | Coefficients for the filter formula.

Scheme a, a; a, a; a, as ag Order
F12 (793+462a ) (99+314ay) 495(—1+2ay) 55(1—2a) 33(=14+2ap) 3(1-2ap) (—=1+2a) 12
1024 256 2048 512 1024 512 2048
2.5 p—
ot ' (i)l | 2f i .
150 e ‘.
50+ .7 f
1+ e
(ii) e

o100} g 031 /

£ (i) £ ol !

1) on '

& < v

E 150} E st .

N
N
1+ ~
2200 + AN . I
1.5} - !
—Exact L - - RK3 S
250 —TDCCS | — 2 [—TDCNCS NS 4
- - TDCNCS * TDCCS S~ . e
' ' n ' L -2.5 1 1 ! N 1 '
4 05 0 0.5 1 15 2 2.5 3 3 2.5 2 15 1 0.5 0 0.5
Real Real
(a) (b)

FIGURE4 | (a)Eigenvalues of the (i) Exact, (ii) TDCCS, and (iii) TDCNCS. (b) Stability regions of the three-stage Runge-Kutta time-integration
scheme and eigenvalues of the TDCNCS and TDCCS scaled by their maximum stable CFL.

6 | Time Integration

Discretizing the spatial derivatives using the compact scheme
described in Equations (3.1) and (3.2) yields an ordinary differ-
ential equation (ODE), given as

du

= =S®), 6.1

= S (6.1)
where S(u) is the spatially-discretized approximation of the
right-hand side. The ODE is evolved in time using the third-order
TVD Runge-Kutta (TVDRK3) method [25]:

uD =" + ArSW"),

»_3

W@ =3+ Lo Lasam),
4 4 4

W = %u" + %u@ + %ArS(u‘”). (6.2)

Figure 4a shows the eigenvalues of the exact, TDCNCS, and
TDCCS schemes, while Figure 4b shows the stability region
boundary of the TVDRK3 method. Linear stability requires a time
step At such that the eigenvalues of the spatial discretization
scheme scaled by Ar/Ax? fall within the stability region of the
time integration method. Since the eigenvalues of the TDCNCS
and TDCCS schemes are purely imaginary, we consider the value
at which the stability region boundary of TVDRK3 intercepts
the imaginary axis, i.e., +1.732. The maximum magnitude of the
eigenvalues for the TDCNCS and TDCCS schemes are 15.157 and
147.168, respectively. This results in the following linear stability
bound on the time step:

% <0.11 (TDCNCS), 0.011 (TDCCS). (6.3)
X

Figure 4b shows the eigenvalues of the TDCNCS and TDCCS
schemes scaled by these limits, and they lie within the stability
region of TVDRK3. The TDCCS scheme has a very restrictive time

step bound compared with the TDCNCS scheme, and this is a
significant drawback. In future work, we propose to develop opti-
mized high-order explicit Runge-Kutta methods for the TDCCS
schemes [26] to allow larger time steps.

7 | Numerical Results

This section presents several numerical experiments that demon-
strate the accuracy and effectiveness of the proposed method. The
tests aim to highlight the high-order accuracy of the scheme for
one-dimensional linear and nonlinear problems, as well as for a
two-dimensional linear problem. In addition, the performance
of the method is assessed in convection-dominated cases, par-
ticularly when the coefficients of the third-derivative terms are
small. For problems involving both convection and dispersion,
spatial discretization is performed using two high-order compact
schemes for comparison:

« TDCNCS: The existing eighth-order cell-node compact
scheme [1] for the first derivative, combined with the
eighth-order cell-node compact schemes (2.4) for the third
derivative,

« TDCCS: The existing eighth-order central compact scheme
[23] for the first derivative, combined with the newly devel-
oped eighth-order cell-centered compact schemes (3.1) for
the third derivative.

To quantify accuracy, the following error norms are employed:

L® = max |u, —u,|,
ogigNl e~ al

1 N
L'= z lu, — ugl,
N+14

. N 1/2
L2 = 1 Iue _ud|2> b
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FIGURES5 | Numerical results for Example 7.1 with ¢ = 1. The first and second columns correspond to TDCNCS and TDCCS, respectively. The
top row displays the exact solution (solid lines) and the numerical approximation (Q) of the left-moving wave at r = 0 (black), r = 0.25 (blue), r = 0.5

(green), t = 0.75 (magenta), and ¢t = 1 (red). The bottom row shows the associated pointwise errors, which grow with time.

where u, and u, denote the exact and approximate solutions,
respectively. For stability in linear cases, the time step At is cho-
sen using a CFL value of 0.01, computed as

0.01

At = : , (1D case), (7.1)
max |g’(u)| 4 max Lf @l
Ax Ax3
and
0.01
At = , (2D case). (7.2)
max |g; ()]  max|g)w)]
Ax Ay
max | f{(w)| max|fw)]
+
Ax3 Ay?

The selected time step lies within the stability region of both TDC-
NCS and TDCCS schemes (see Equation 6.3), thereby guarantee-
ing numerical stability and physically meaningful results. Peri-
odic boundary conditions are employed in all numerical exper-
iments. All numerical experiments are performed on a Mac-
Book Pro with an Apple M1 chip and 8 GB of memory, using
MATLAB-R2024a.

Example 7.1. Consider the linear one-dimensional KdV
equation

u, + c‘zuxxx =0, (x,t)€[0,2x]x][0,1], (7.3)
u(x,0) = sin(cx), x € [0,2x], '

whose exact solution is the left-moving wave u(x, ) = sin(c(x +
1)) for x € [0,2x], t € [0, 1]. Two representative cases are exam-
ined: A low wavenumber with ¢ = 1 (N = 40, kAx = 0.157) and
a higher wavenumber with ¢ = 8 (N = 40, kAx = 1.2566).

For ¢ = 1, the computed solutions and pointwise errors for N =
40 atr =0,0.25,0.5,0.75,1 are shown in Figure 5, while Table 8
reports the L®-, L!-, and L?-errors together with the observed
convergence rates at the final time ¢# =1. For example, the
L>-error decreases from 1.6089 x 10~° (TDCNCS) and 6.4028 x
10719 (TDCCS) at N = 20 to 6.6573 x 10712 and 2.9112 x 10712,
respectively, at N = 40. Beyond this resolution, the error stag-
nates at machine precision.

For ¢ = 8, the solutions and corresponding pointwise errors for
N =40 at t =0,0.3,0.7,1 are shown in Figure 6, with error

Numerical Methods for Partial Differential Equations, 2026
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TABLE 8 | Errors and spatial order of convergence for Example 7.1 with¢ =1 atf = 1.

Scheme N L>-error Rate L'-error Rate L?-error Rate

TDCNCS (¢ =1) 10 4.1920e-07 — 2.7131e-07 — 2.9230e-07 —
20 1.6089¢-09 8.0254 1.0249¢-09 8.0483 1.1120e-09 8.0381
30 6.2438e-11 8.0133 3.9824e-11 8.0103 4.3506e-11 7.9933
40 6.6573e-12 7.7810 4.2273e-12 7.7965 4.6423e-12 7.7783

TDCCS(c=1) 10 1.1729e-07 — 7.5910e-08 — 8.1641e-08 —
20 6.4028e-10 7.5172 4.0809e-10 7.5393 4.4262e-10 7.5271
30 2.6557e-11 7.8493 1.6932¢-11 7.8485 1.8473e-11 7.8340
40 2.9112e-12 7.6846 1.8481e-12 7.6996 2.0286e-12 7.6785

1.5 ; ; ; ; ; ; 15 ; ; ; ; ; ;

15 . . . . . :
0 1 2 3 4 5 6
x
(a) TDCNCS - Numerical solution
12 x107 . . . . . .
1 - 4
0.8 E
£ 0.6} §
=
0.2} ‘ ‘
0 1 1 1 1 1 1
0 1 2 3 4 5 6
x

(¢) TDCNCS - Pointwise error

15 : . . . . :
0 1 2 3 4 5 6
x
(b) TDCCS - Numerical solution
12 x1074 . . . . . .
1 -
0.8 [
£0.6 ’
=
04
0.2
0 1 1 1 1 1 1
0 1 2 3 4 5 6

x
(d) TDCCS - Pointwise error

FIGURE 6 | Numerical results for Example 7.1 with ¢ = 8. The first and second columns correspond to TDCNCS and TDCCS, respectively. The top
row displays the exact solution (solid lines) and the numerical approximation (O) of the left-moving wave at 7 = 0 (black), = 0.3 (blue), t = 0.7 (green),
and 7 = 1 (red). The bottom row shows the associated pointwise errors, which increase over time.

metrics summarized in Table 9. In this setting, TDCCS con-
sistently yields an order of magnitude lower absolute error
compared to TDCNCS. For N = 40, the L®-error is 1.1 x 1073
for TDCNCS vs. 1.1796 x 10~* for TDCCS, while for N = 160,
the errors reduce to 1.2758 x 10~® and 5.0733 x 10~°, respec-
tively. Although both retain near-eighth-order accuracy, TDCCS

achieves superior accuracy across all tested resolutions. Notably,
no low-pass filtering is applied in these computations.

Example 7.2. To evaluate the method’s accuracy in address-
ing nonlinear problems, we compute the classical soliton solution
of the KdV equation.
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TABLE9 | Errors and spatial order of convergence for Example 7.1 with ¢ =8 att = 1.

Scheme N L>-error Rate L'-error Rate L*-error Rate

TDCNCS (¢ = 8) 20 7.9090e-01 — 5.1190e-01 — 5.4650e-01 —
40 1.1000e-03 9.4898 6.9840e-04 9.5176 7.6483e-04 9.4809
60 3.6490e-05 8.4003 2.3273e-05 8.3891 2.5610e-05 8.3772
80 3.4187e-06 8.2305 2.2126e-06 8.1796 2.4374e-06 8.1759
100 5.6757e-07 8.0471 3.6157e-07 8.1179 3.9972e-07 8.1021
120 1.3032e-07 8.0702 8.3118e-08 8.0637 9.1845e-08 8.0663
140 3.7705e-08 8.0454 2.4012e-08 8.0552 2.6569¢e-08 8.0464
160 1.2758e-08 8.1152 8.2414¢-09 8.0085 9.0886¢-09 8.0335

TDCCS (¢ = 8) 20 9.4000e-03 — 6.1000e-03 — 6.5000e-03 —
40 1.1796e-04 6.3163 7.6348e-05 6.3201 8.3279¢e-05 6.2863
60 7.5773e-06 6.7705 4.8327e-06 6.8067 5.3206e-06 6.7838
80 9.5592e-07 7.1963 6.1869¢-07 7.1452 6.8076e-07 7.1472
100 1.8591e-07 7.3379 1.1843e-07 7.4091 1.3090e-07 7.3889
120 4.6895e-08 7.5545 2.9909e-08 7.5480 3.3055e-08 7.5485
140 1.4411e-08 7.6543 9.1774e-09 7.6640 1.0155e-08 7.6562
160 5.0733e-09 7.8184 3.2789¢-09 7.7078 3.6158e-09 7.7334

u(x, 0) = 3esech?(k(x — x,)),  x € [0,2], (7.6)

u, — 3w, +u,__ =0 xe&[-10,12], >0,
{t ( )x XXX [ ] (74)

u(x,0) = —2sech®(x), x € [-10,12].

The exact solution is u(x, f) = —2sech?(x — 4¢) for x € [-10,12]
and ¢ € [0,0.5]. Figure 7 presents the numerical solutions and
corresponding errors for N = 80 ats = 0,0.25,0.5, while Table 10
lists the L®, L, and L? errors together with the observed conver-
gence rates for grid sizes ranging from N =20to N = 160.

The results indicate that TDCCS provides consistently higher
accuracy, with errors at least an order of magnitude smaller than
those of TDCNCS for all tested grid sizes. The improved accuracy
is accompanied by greater computational effort, as the runtime of
TDCCS is more than twice that of TDCNCS. In terms of conver-
gence, TDCCS approaches seventh-order accuracy for larger N,
whereas TDCNCS maintains a rate close to the theoretical eighth
order. For example, with N = 160, TDCNCS yields an error of
1.2705 x 1077, which is comparable to the error obtained by
TDCCS at N = 100 under similar computational effort. Increas-
ing the grid size beyond N = 160 does not lead to further error
reduction due to machine precision limits. In summary, TDCCS
delivers higher accuracy, while TDCNCS remains more efficient
in terms of computational cost.

Example 7.3. We solve the following nonlinear KdV
equations. To observe the effectiveness of our method in han-
dling a nonlinear problem with a low coefficient for the third
derivative term, we calculate the classical soliton solutions of the
KdV equation.

2
u, + (% )X +eu ., =0. (7.5)

7.1 | Single Soliton Propagation

In the case of a single soliton, the initial condition is as follows,

with k = 0.5\/5, ¢=0.3, x,=0.5 and € = 5x 10™*. The exact
solution is a solitary wave (a soliton) traveling to the right with
speed c, expressed as

u(x, 1) = 3¢ sech’ (k[(x — x¢) — ct]).

The numerical simulations are carried out on the domain x €
[0,2] with N = 80. Figure 8 shows the numerical solution and
corresponding error at times r=0,1,2, and 3. The TDCCS
scheme achieves significantly smaller absolute errors than TDC-
NCS, resulting in at least an order of magnitude improvement in
accuracy.

7.2 | Double Soliton Collision

For the case of a double soliton collision, the initial condition is

u(x,0) = 3¢;sech?(k; (x — X))
+ 3¢,sech?(ky(x — X)), x € [0,2], (7.7)

with k; = 0.5\/?{ for j=1,2,¢,=03,¢,=0.1, x; =04, x, =
0.8 and € = 4.84 x 10™*. The simulations are carried out on the
domain x € [0,2] with N =100 for times ¢ € [0,4]. Figure 9
presents the solutions at r = 0, 1, 2 together with a contour plot
up to ¢ =4. Both TDCNCS and TDCCS perform well for this
example.

7.3 | Triple Soliton Splitting

For the case of triple soliton splitting, the initial condition is
given by

Numerical Methods for Partial Differential Equations, 2026
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FIGURE 7 | Numerical results for Example 7.2. The first and second columns correspond to TDCNCS and TDCCS, respectively. The top row shows
the exact solution (solid lines) and the numerical approximation (Q) at # = 0 (black), r = 0.25 (blue), and ¢ = 0.5 (red). The bottom row displays the
corresponding pointwise errors for N = 80.

TABLE 10 | Errors and spatial orders of convergence for Example 7.2 at t = 0.5.

Scheme N L*-error Rate L'-error Rate L?-error Rate

TDCNCS 20 5.4860e-01 — 1.4320e-01 — 2.1960e-01 —
40 1.3000e-02 5.3992 3.6000e-03 5.3139 4.4000e-03 5.6412
60 3.2815e-04 9.0741 5.7717e-05 10.1936 8.2161e-05 9.8176
80 3.3170e-05 7.9665 5.6579e-06 8.0731 7.9961e-06 8.0983
100 5.6879e-06 7.9021 9.0301e-07 8.2237 1.2950e-06 8.1582
120 1.3255e-06 7.9889 2.0603e-07 8.1050 2.9640e-07 8.0877
140 3.7699e-07 8.1565 5.8893e-08 8.1239 8.4988e-08 8.1038
160 1.2705e-07 8.1452 2.0016e-08 8.0819 2.8873e-08 8.0850

TDCCS 20 2.0500e-02 — 4.3000e-03 — 6.8000e-03 —
40 2.6299¢-04 6.2845 4.7855e-05 6.4895 7.2470e-05 6.5520
60 1.7387e-05 6.6994 2.9117e-06 6.9043 4.2310e-06 7.0061
80 2.3505e-06 6.9559 3.8803e-07 7.0057 5.7107e-07 6.9614
100 4.8863e-07 7.0393 8.2312e-08 6.9487 1.1755e-07 7.0835
120 1.3224e-07 7.1686 2.2018e-08 7.2326 3.1553e-08 7.2136
140 4.2387e-08 7.3809 7.1749e-09 7.2739 1.0301e-08 7.2619
160 1.7577e-08 6.5921 3.0422e-09 6.4255 4.2291e-09 6.6670
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FIGURE 8 | Numerical results for initial condition 7.6 of Example (7.3). The first and second columns correspond to TDCNCS and TDCCS, respec-
tively. The top row shows the exact solution (solid lines) and the numerical approximation (O) at = 0 (black), # = 1 (blue), t = 2 (green), and t = 3
(red). The bottom row displays the corresponding pointwise errors as they evolve over time.
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FIGUREY9 | Numerical results for initial condition (7.7) of Example 7.3. The top row shows the solutions obtained using TDCNCS, while the bottom
row shows those obtained using TDCCS.
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FIGURE10 | Numerical results for initial condition (7.8) of Example 7.3. The top row shows solutions obtained using TDCNCS with a filter (red)
and without a filter (black), while the middle row shows results from TDCCS with a filter (red) and without a filter (blue). The bottom row displays the

surface plot at r = 4 without a filter.

2 of x—-1
u(x,0) = Zsech ( , xel0,3], (7.8)
3 \/1085)

with € = 107, Numerical experiments are performed on the
domain x € [0, 3] using N = 150 grid points. Figure 10 shows the
solutions at t = 0, 1, 2 together with a surface plotup to t = 4.

Without filtering, the TDCNCS scheme produces noticeable
high-frequency oscillations during the soliton splitting process,
while the TDCCS scheme yields a comparatively smooth solu-
tion. To suppress these oscillations, a 12th-order periodic filter
(denoted by F12) with free parameter a = 0.4 is applied. The fil-
ter is implemented every 20 steps for TDCNCS and every 50 steps
for TDCCS.

The numerical results in Figure 10 highlight the effect of fil-
tering on both schemes. In the case of TDCNCS, the unfiltered

solution develops oscillations that grow in magnitude after 1 =
1, whereas the filtered solution (TDCNCS-F12) remains much
closer to the expected soliton profile. For TDCCS, the unfiltered
solution already remains relatively smooth, and the filtered coun-
terpart (TDCCS-F12) introduces only minor corrections. Filter-
ing every 50 steps proves sufficient for TDCCS, but the same
frequency of application does not fully eliminate oscillations in
TDCNCS, which requires more frequent filtering.

These observations confirm that TDCCS provides a more stable
and accurate numerical approximation for soliton splitting, while
TDCNCS can achieve comparable accuracy only when combined
with frequent high-order filtering.

Example 7.4. In this example, we investigate the zero
dispersion limit of conservation laws, specifically the KdV
equation (7.3) with the continuous initial condition
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FIGURE 11 | Numerical solutions for initial condition (7.9) of Example 7.3 at r = 0.5, computed using TDCNCS (black) and TDCCS (blue).

u(x,0) =2+ % sin(2zx), x € [0,1]. (7.9)
Theoretical and numerical studies of this limit as ¢ — 0% are
available in References [27, 28]. Our objective is to evaluate the
capability of the proposed methods to resolve fine-scale oscilla-
tory structures that arise when ¢ is small. Solutions are computed
at? = 0.5fore =107%,107%,107°, and 10~7. Since no closed-form
solution is available, a reference solution is generated using
TDCNCS with a highly refined mesh of N = 1000. For e = 107*
with N =100 and e = 10~ with N = 200, Figure 11a,b presents
the results from TDCNCS (black) and TDCCS (blue), compared
against the reference (red). For e = 107° with N = 800 and ¢ =
1077 with N = 1600, the results shown in Figure 11c-f can be
regarded as converged solutions, in the sense that further refine-
ment does not alter the numerical solution. These solutions dis-
play persistent oscillatory structures that are characteristic of dis-
persive limits [28].

It is important to note that these oscillations are physical rather
than numerical artifacts. Applying a low-pass filter does not affect
the results, since the rapidly oscillating structures of the physi-
cal solution are not considered spurious high-frequency noise at
the 2Ax scale when sufficiently fine meshes are employed. How-
ever, if the mesh resolution is inadequate, the computed solution
may fail to converge. For example, with ¢ = 107, simulations
using 200, 300, 400, or even 600 cells did not match the con-
verged solution obtained with 800 cells. As ¢ — 0", the numer-
ical problem becomes more difficult, with the required mesh res-
olution increasing rapidly to capture the small-scale dispersive
features.

We now consider the discontinuous top-hat initial condition

1, if 025<x<4,
u(x,0) = (7.10)

0, else,

with parameters N = 1000, ¢ = 107, and evolution times t =
0.01 and ¢ =0.05. The corresponding results are shown in
Figure 12. For the TDCNCS scheme (top row), the numerical
solutions exhibit spurious oscillations around the discontinu-
ity in addition to the left-propagating dispersive wave. These
non-physical oscillations are effectively removed after applying a
12th-order filter (F12), as illustrated in subfigures (b) and (d). The
filtered results clearly capture the left-propagating wave packet
with improved smoothness.

For the TDCCS scheme (bottom row), the unfiltered solutions
(subfigures (e) and (g)) already display reduced oscillations com-
pared to TDCNCS, although small irregularities remain near
the discontinuity. Application of the same 12th-order filter (sub-
figures (f) and (h)) further suppresses these oscillations, yield-
ing smooth profiles comparable to those obtained with filtered
TDCNCS.

These results demonstrate that the high-order filter successfully
eliminates spurious high-frequency oscillations while preserving
the dispersive wave structures. The filtered solutions obtained
using both TDCNCS and TDCCS are consistent with earlier stud-
ies [19, 29], which reported the evolution of the top-hat profile
into a sequence of dispersive waves that gradually separate into
solitary waves as time increases.

Example 7.5. We consider the two-dimensional linear dis-
persion equation

+u,,, =0, (x,y,1)€(0,27r)%x(0,27) % (0,T],
(7.11)
with initial condition u(x, y,0) = sin(x + y). The corresponding
exact solution is u(x, y,t) = sin(x + y + 2t). Figure 13 presents
the numerical solution and pointwise error for N =40 at7 =1,

while Table 11 summarizes the L®-, L!-, and L?-errors along

Uy + Uyyy yyy
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FIGURE 12 | Numerical solutions for initial condition (7.10) of Example 7.3, computed using TDCNCS (black) and TDCCS (blue).
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FIGURE 13 | Solutions and errors of Example 7.6. The first and second columns correspond to TDCNCS and TDCCS, respectively. The top row
shows the numerical solutions at r = 1 with N = 40, while the bottom row presents the corresponding errors.

16 of 20 Numerical Methods for Partial Differential Equations, 2026

85U8017 SUOWILLOD BA 181D 3|ced!dde 8Ly Aq peusenob afe sajoie O ‘88N JO Sa|NJ 0} Akeid13U1|UO /8|1 UO (SUOIPUOD-PUR-SLLIBYLID™AB| 1M AlRIq 1 U1 |UO//:SANL) SUORIPUOD PUe SWis | 841 88S *[9202/T0/60] Uo AriqiTauljuo A1 ‘Aloreioge T [euo N 8.0UIBAI T 8oueinve] A 0900. WNU/Z00T 0T/I0p/W0d A8 | Ake.d1jpul|uo//sdny woly papeojumod ‘T ‘9202 ‘922860T



TABLE 11 | Errors and spatial orders of convergence for Example 7.6 at t = 1.
Scheme N L®-error Rate L'-error Rate L*-error Rate
TDCNCS 10 8.6153e-07 —_ 5.5759¢-07 — 6.1314e-07 —
15 3.2458e-08 8.0864 2.0701e-08 8.1226 2.3056e-08 8.0911
20 3.2016e-09 8.0516 2.0581e-09 8.0241 2.2787e-09 8.0447
25 5.3720e-10 7.9995 3.4221e-10 8.0402 3.7988e-10 8.0285
30 1.2351e-10 8.0629 7.8764e-11 8.0570 8.7802e-11 8.0340
35 3.4686e-11 8.2386 2.2075e-11 8.2517 2.4525e-11 8.2737
40 1.0682e-11 8.8202 6.7786€e-12 8.8419 7.5369¢e-12 8.8360
TDCCS 10 2.4044¢-07 — 1.5561e-07 — 1.7125e-07 —
15 1.1687e-08 7.4581 7.4536e-09 7.4942 8.2985e-09 7.4656
20 1.2744e-09 7.7030 8.1963e-10 7.6737 9.0735e-10 7.6936
25 2.2507e-10 7.7700 1.4337e-10 7.8130 1.5915e-10 7.8007
30 5.3902e-11 7.8391 3.4370e-11 7.8337 3.8200e-11 7.8269
35 1.7566e-11 7.2734 1.1179e-11 7.2860 1.2422e-11 7.2875
40 8.2851e-12 5.6279 5.2575e-12 5.6495 5.8456e-12 5.6450
1 0.
1
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FIGURE 14 | Numerical solutions for initial condition (7.13) of Example (7.12) at ¢ = 0, 0.5, 1, computed using TDCNCS (black) and TDCCS (blue).
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FIGURE15 |

with the observed convergence rates at the final time ¢ =1.
For instance, the L®-error decreases from 3.2016 x 10~° (TDC-
NCS)and 1.2744 x 10~° (TDCCS) at N = 20t01.0682 x 107! and
8.2851 x 1072, respectively, at N = 40. Further refinement does
not reduce the error, as it is limited by machine precision.

Example 7.6. We consider the Ito-type coupled nonlinear
problem

u, — Bu? + Uz)x — U, =0,

v, —2(uv), =0, (7.12)
with two different initial conditions. First, for the trigonomet-
ric case

u(x,0) = cos(x), v(x,0) = cos(x), (7.13)
the simulations are performed with 80 cells in the domain x €
[0,27] at times ¢ = 0,0.5, 1 under periodic boundary conditions.

Numerical solutions for initial condition (7.14) of Example (7.12) at ¢ = 0, 1, 2, computed using TDCNCS (black) and TDCCS (blue).

Figure 14 shows that the u-component exhibits dispersive wave
behavior, while the v-component develops shock-type profiles.

Next, for the Gaussian initial condition

u(x,0) = exp(—x?), v(x,0) = exp(—x?), (7.14)
the problem is solved with 160 cells in the domain x € [-15,15]
up to r = 2, as shown in Figure 15. A comparison of the two com-
pact schemes shows that TDCCS consistently produces smoother
and more stable solutions, particularly in regions with steep gra-
dients, while still preserving the essential dispersive structures. In
contrast, while TDCNCS resolves oscillatory features with high
accuracy in smooth regions, it tends to introduce mild spurious
oscillations near steep gradients. No filtering is applied in these
experiments. Overall, TDCCS demonstrates superior robustness
for this coupled nonlinear problem, and the computed results
align well with those reported in Reference [30].
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In summary, the numerical experiments demonstrate that the
proposed TDCCS scheme consistently delivers higher accuracy
than the reference TDCNCS scheme across a wide range of
linear and nonlinear test problems in one and two dimen-
sions, including convection- and dispersion-dominated regimes,
thereby confirming its effectiveness and robustness for solving
higher-order PDEs.

8 | Conclusions

This paper introduces a new class of compact schemes, termed
third derivative central compact schemes (TDCCS), for approxi-
mating third-order spatial derivatives in the KdV equation. Addi-
tionally, the existing third derivative cell-node compact schemes
(TDCNCS) are extended to achieve accuracy up to the tenth order.
The TDCCS framework computes third-order derivatives at cell
nodes by incorporating values from both cell nodes and cell cen-
ters. The values at cell centers are determined using the same
scheme as for cell nodes and are treated as independent variables.

A detailed comparison between TDCNCS and TDCCS has
been conducted across various scenarios, including the one-
dimensional and two-dimensional linear KdV equations, the
nonlinear KdV equations, and a convection-dominated problem
where the coefficients of the third derivative terms are small.

For linear KdV equations, TDCCS demonstrates significantly
lower errors compared to TDCNCS. Specifically, for lower
wavenumbers, the errors from TDCCS are at least half of those
obtained using TDCNCS, while for higher wavenumbers, TDCCS
errors are approximately one-tenth of those from TDCNCS.

For the convection-dominated nonlinear KdV equation, TDC-
NCS introduces spurious oscillations, requiring the use of a
low-pass spatial filter to suppress them. In contrast, TDCCS does
not generate spurious oscillations, eliminating the need for filter-
ing. Moreover, wherever the exact solution is available, TDCCS
produces errors that are about one-tenth of those from TDCNCS.
For continuous convection-dominated problems, neither TDC-
NCS nor TDCCS requires filtering. However, for discontinuous
cases, filtering is necessary to reduce oscillations.

Further tests on two-dimensional linear KdV and coupled nonlin-
ear systems confirm the robustness of the proposed schemes. The
linear case highlights the high-resolution capability of TDCCS,
while the coupled system demonstrates its stability near steep
gradients. Overall, the results indicate that the method remains
effective for a wider range of multidimensional and coupled non-
linear PDEs.

In summary, TDCCS provides a more accurate, stable, and effi-
cient alternative to TDCNCS, making it a promising approach
for solving third-order derivative problems in KdV equations.
Future work will focus on refining the method by incorporat-
ing stability-optimized Runge—-Kutta techniques to overcome the
limitations imposed by a low CFL number.
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